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Abstract. We consider the situation in which the sampled population is a subset of a larger finite popula-
tion that is “exposed to sampling” according to a certain probability distribution. The exposure prob-
abilities are determined independently of the sampling method used. A composite estimator is proposed
for the population total together with approximate formulae for its expectation and variance. Anunbiased
estimator for the apporximate variance is also suggested.

1. Introduction

It sometimes happens that the actually sampied population is itself a subset of a finite
taraget population that gets ‘exposed’ to sampling according to some probability dis-
tribution. The probability distribution is independent of the sampling method used,
and the sampler has no means for controlling it. For example, in sampling the popu-
lation of a town, we may decide, for convenience, to take the sample from among
those individuals who attended an outpatient clinic such as E.N.T. or Eye clinic. The
group of individuals attending the clinic at a specified period of time may be looked
at as a subgroup of the inhabitants of the town that is exposed to the clinic in accor-
dance with a chance mechanism. And although it is possible, through a properly cho-
sen sampling procedure, to control the selection probabilities, it is not possible to do
the same for exposure probabilities of units in the target population. As aresult, ifa
target population parameter is to be estimated, we can not rely soley on a design-
based estimator since a model specifying the manner in which units in the actnal
population are generated from the traget population has to be set. A sort of model-
design-based estimator must therefore be resorted to.
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The main problem with modelling in the analysis of surveys stems from the fact
that it is usually difficult, in practice, to estimate bias in the estimator or detect depar-
tures from the model [1]. Attempts for combining model-based and design-based
estimators into a composite estimator were made in the field of small area estima-
tion, by Schaible [2] and Fay and Herriot [3]. In this paper an estimator, based partly
on a model and partly on design, is suggested for the population total. We shall call
it composite because of its mixed nature although this term is usually used for an
estimator that represents a combination of two separate estimators.

2. The Problem

We have a finite target population U of N units. A sample of size n is to be taken
from U by some method. The sampler, however, cannot sample U itself but can only
sample a subset of it, S, say, of size k, that happened to be exposed to sampling. The
value of k is fixed in advance and satisfies n < k < N. The exposed subset S, is a ran-
dom realization following the conditional (on k) distribution P(S, ).

Our problem is to estimate the total T of a characteristic y in the population U.
Of course if the sample size is not fixed, the exposed subset which we may then
denote by S will follow the unconditional distribution P(S), and the size of S, K say,
will be a random variable satisfying 0 < K < N. In the example of the outpatients
clinic, individuals in the town form U, those in the clinic S, while fixing K at k will
mean sampling only subsets of U of size k.

3. Exposure Probability and Inclusion Probability

Let I, be an exposure indicator taking the value 1 if unit i is exposed but 0 other-
wise. The exposure probability of unit i, p; say, is

p; = prob (I, = 1) = E(I)) i=1,.,N

while the conditional exposure probability for unit i, given that the number exposed
is fixed at k, is

p; = prob (I; = /K = k) = E(I, = 1/K = k) i=1,..N
Similarly, the conditional exposure probability for unitsi and j is
p{,—=prob(Iin=1/K=k) i=1,..,N

The p, and p;; can be expressed in terms of the p;. For if we let

N N
Zpi=N*’d=ZPi
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(1-p)), then it can be shown (Hajek [4] pp. 83 and 142) that
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Where p = }. pf (1 -p)/d, and where o(d!')d — 0 as d — = provided that
1

| k - N* |d” remains bounded by a constant independent of d. Also,
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P, p‘_pj_1+ ] (k—N)+—i;2——
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where d o(d"1) — 0 in probability.
Now if we assumed that:

p,=p alli.- .. (3.3)

N
then since Z p; = N*, it follows that p = N* / N so that on using (3.1) and (3.2) we
1

have the asymptoticaly valid results:

.k :
Pi=P ~ T all i .. (3.4)
K-N+NIN
= p, forall i & j (i#]) (3.5
if
N

Suppose a sample of n units is to be drawn from S,. Denote by m, (k) the overall inclu-
sion (in the sample) probability for unit i given that k units are exposed, and by wij(k)
the overall inclusion probability, given k, for unitsiand j (i # j}. Define the inclusion
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indicator t, that takes the value 1 or 0 depending on whether or not uniti(i = 1,...,N)
is included in the sample. It follows that:

m(k) = Prob. (t; = /'K = k)

= Prob. (i exposed and selected /K = k)
= Prob. (i selected/i exposed and K = k) Prob. (i exposed/K = k)

Assuming (3.3) and using (3.4), we have

m(k) = m; p; .. (3.6)
where m; = Prob (i selected /i exposed and K = k). By a similar argument:

m(k) = my p, - (3.7)

where m;; is the probability that both i and j (i#]) are selected given that they are both
exposed and K = k. The inclusion probabilities (3.6) and (3.7), each consists of two
factors: One factor (p; and p;) is determined independently of the sampling method
used and can not be controlled. The other factor (m, or m, ;) is dependent on the sam-
pling method, and can thus be controlied by the sampler For example the units can
be selected so that the m, are proportional to a measure of size.

Finally to obtain the explicit forms of P(S) and P(S,) we note thatif p , p,, .. Pn
is any sequence of numbers, here exposure probabilities, satisfying 0 < p, = 1 forall
1and if S is an arbitrary subset of U and r its complement in U, then assuming the L

independent
Py= 11 2. [T (i -») ..(3.8)

If the number exposed is fixed at k, we have

P ‘)=C° e Ile-2y) ¥F&=« (3.9

E€ ¥ i€r
=0 if KEGk
c
with C* = C* (p,, ..., py), where C* is such that } P(S,) = 1 and the summation is
over all C = (I:) distinct subsets of size k. In the terminology of Hajek [4] (3.8) and

(3.9) define Possion sampling and rejective sampling respectively,
As a result if we assume that the number exposed is fixed at k and that p, =p for
all i, the non zero value in (3.9) becomes

C* p (1- p
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Summing this over all subsets of size k and equating to 1 we have

c' = 1

- k -
Cp (1-p)

-k

so that

1
pis,)="1 . (3. 10)

if K = k but equals 0 otherwise.

4. Estimation of the Population Total
In this section we estimate the total T of characteristic y in U on the basis of a
sample of size n from the exposed subset S,. We assume that exposures are indepen-
dent and that the total number of units exposed is fixed at k. Furthermore, we make
the simplifying assumption that the conditional exposure probabilities p/ and p;; of a
unit and of two different units respectively, are as given by (3.4) and (3.5), and that
the conditional distribution of S, is given by (3.10).

Define the subclass of linear estimators

ATI:Z By, {4 D)

where the 8,(i =1, ..., N) are constants. For T*, to be unbiased given K = k, we must
have

» N N
E[T"E/k):): 7 () By, =2 y=T . (4D

or, in view of (3.6),
N
2 m P By =T

This requries that

mlp; ﬁizl I=11-1N
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so that

A Y . Y,
T:z W=Zm .-.(4.3)

3

is an unbiased estimator of T. It is the only unbiased estimator in the subelass 4.1)
and is thus the ‘best’ estimator in that subclass. Note however that the expectation in

(4.2)‘is conditional since averaging is made over all subsets of size k. The estimator
T* will have zero variance if

ny .
- (k)= —"
n (k) 7

i.e if the m(k) are proportional to the y,. Let x be a characteristic the value of which

is positive and known for all units in the population. If x , the value of x for unit i, is

approximatgly proportional to the y,, we may expect considerable reduction in the

variance of T™ if the (k) are made proportional to the x,. If for example we managed
to make

N
and if x and y are strictly proportional, (e.g. Cochron [5], p. 259) x,/ ). x; will equal
y,/ Tand T* = T which has zero variance. i

The characteristic x can be any variable positively correlated with y provided
that its values are positive and known for all units in U. It may, for example, be a
measure of size, an eye estimate of y, or the value of y at a previous occasion. It may
also be a characteristic known to be positively correlated with the phenomenon
under study such as age.

Now, ifk = N, then §, = U and p; = 1. The estimator T* is then the usual Hor-
n

vitz - Thompson estimator Typ = 2 v,/ m,. For this estimator, several methods are
! N

i

available for satisfying the condition m, = nx,/ }_ x, when sampling without replacement.
i

Among these are the methods of Durbin [6], Sampford [7], Samiuddin and Asad [8],
Chao [9], Chakrabarti [10], Gupta et al. [11], Lahiri [12], and Midzuno [13]. When,
however, k < N as is here assumed, m,(k) contains the factor p; which is uncontrolla-
ble. On the other hand the sampler is sampling S, rather than U itself. By a suitable
method of selection we may achieve
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hx

"_i . (44

but then T* will not equal T even under strict proportionality between x and y, and
hence no reduction in variance may be gained. Let us set

m

N N
X:z ok Xk:2 o
i=1 i=1
and put

Xk=aX L (49

Using (3.6), {(4.4) and (4.5) we have

’

v (=i (4.6
; o . (4.

so that, in view of (4.6) and (4.3) and assuming strict proportionality between x and
y we get:

f-2r7
p]

Hence, if we require an estimator with zero variance under strict proportionality, we
may take

Ja P; - Y, 1 - Y,
=AEJZTiE=Tx. m 47

i

" If x and y are strictly proportional, and the sample is selected such that (4.4) is satis-
fied, T is a constant and thus has zero variance.

As a result, if x is approximately proportional to y we may expect considerable
precision in T assuming our assumption about the p; is valid.

Note, however, that T is not in general, unbiased. Itis unbiased if « = 1. In the
special case k = N, = T and 7 is again the Horvitz - Thompson estimator, which can
be shown to be unbiased [14].
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Although T is not a combination of two separate estimators: one design-based
and the other model-based, we shall still describe it as ‘composite’ being partly a
design-based and partly a model-based (through the assumption concerning expo-
sure probabilities).

5. Approximate Mean and Variance of T
Since X, is a random variable, so is «. Hence the estimator T is a ratio of two ran-

dom variables. As a result, to obtain the expectation and variance of T we resort to
approximation. Put

f=x ’}‘; =x (¥, x,)

where Y* = )y, / m,. Using the inclusion indicator t;, it can be readily established
that: i

N

E[i y‘_/m‘]:z piyl,~%T (501

i

and that
V(1)= =00 (1- 7 i)y
cov (¢, b= m k) - m (k) 7, (k)
i 2]
so that
n N n 5
Vv Z )’g/m;J:V z t‘yl./miJ:Z Jri(k)(l—frd(k))y_;
N
Y. ¥.
+ mow (7, (K - x () FON (52
P E 1 J v ] f

' Furthermorte, denote by Sitheith(i=1,...,c)group of size k and by X, its total.
Also, define the indicator a, such that it takes the value 1if S, is realized but 0 other-
wise. Then from (3.10), and noting that one S, can occur at a time, we have fori =
1, ..., candj#i:
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1

1
=3 ,cov(a,, a,)— 3
i J IS

1 1
E(ey=e V(WTET s
It follows that
[ 1 4
E(Xk)zE[z aiXEkJ—Eink
N-1 c
And because each x; appears ( o ) times in the total )| X, we have
E(X)=+wX (53
It can also be verified that:
. 2
V(X —iixz—l X =5’ (54
( k)*C - k0L ik e
and
{55

n N j
Cov [E y‘_/mi,Xk]~%z ij"k_(%)z XT
i ]

where Xi is the sum of the sums of all X, for all groups S, in which unit j occurred.

Approximate Mean.
It is well known (e.g. Lindley [15] p. 135) thatifz = (Y*, X, ) is a function of Y*

and X, and if E(Y*) and E(X,) are the means of Y* and X, respectively, and V(Y*)
and V(X, ) their respective variances, then for sufficiently ,small JV(Y*)and [ V(X,)

and well-behaved z:
2
E(ny =2 (). E(xN+lv () 92«
dY
2

2
* d z H d z
Cov (Y ,Xx V—22—+1v (x ol
( k) IV X 27 (X ) X’ .. (5.6)
k
2

2
~( & ' & & &
vz =v(r )[ J +2Cov (Y X)) — *—Jw X {](5 7
(z) P OV( F an oY 2 ( k) an
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where all the partial differentials are evaluated at X, = E(X,}and Y* = E(Y*)
But:

2 2 2 2
2 (E (Y ),E(Xk))~%,‘9—f2=o,‘—x/(xk) ‘9"'2-‘”253
aY k
and
P N o« -5
Cov (Y'.X,) =5 ~-—55-2 7, X, +%
o oK, kX C 7

and from (5.6)

2] < - T vy ST
== (5) - Xy, X () 5
s

hence,

2 N

N 2 X
E@M=X E(2)=T +|—3 2[3 T-¢ 2
k i

— N
Since Xl]( is the sum of the sums of ( 1 ) groups each of size k, it follows that

where X is the mean per unit for the units contained in all subsets of size k containing
j. The mean Xl]( should not differ much from the overall mean per unit X and we can
thus put

Mo
2 Zyixj‘—‘
i

k XC
A 52
E@)=T|1+——,
kX
This result shows that, subject to the validity of the exposure model, and the order

of the approximation used, the bias in T approaches zero as $2 — 0. Of course, this
bias is zero if k = N for then §2 = 0.

so that (5.8) simpiifies to
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Approximate Variance:

By an argument similar to that used in arriving at (5.8) and with reference to
(5.7) it can be shown that

AN N y: NN y Y.
V=5 |2, 08- 7 (0) 5+ 3 Y 5 Zm (-2 (n ()
k i m, TS i ¥ : MJ
NT%sY aN'T 1 % -
+ - -~ y, X  ——3 XTI - (5.9)
£x* x| ,2 L

the last term in (5.9) can be written as

2 N 2 N
NT |1 -k _NT =i .2
-2 5 {E—E ijk~TV2 XT}——X nyX*_T
J

k X ]

Again if §i = X this term vanishes, and since Xi is expected to be close to X we may

eliminate this term from (5.9) which then takes the relatively simpler form

A N2 N y?
VIS5 a1 ()
k i m

1

N N y; yj
DIDIE o (r 0 -z (07 (0)
i =] t
2 2 2 A
PR V@) e
KX

Note that if k = N, then m(k) = m; and S = 0 so that V* (T) becomes the variance
of the Horvitz - Thompson estimator T,

We may think of the quantity within the square brackets as giving the variance
of T when the sampled population is the target population. When the actual popula-
tion is a subset of the target population, a component representing the between
actual populations variability must be included in the expression of variance. This is
supplied by the last term in the above expression.
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6. Estimation of V* (T)
To estimate the approximate variance V* (T) we first estimate S2. Suppose C’

(C" < C) subsets of U, of size k each are exposed independently. For ease of refer-

ence, letthese be Sy, Sy, , ..., S/, Then using the indicator variable of section (5) we
get

<’ ¢ ¢
2| 2 1 z
E Z X;‘kJﬁZ X:‘k E (ai)_ c Z Xik
i i :
C o
So an unbiased estimator of }. X?k isC) X,.
i i
N-1 . .
On the other hand, since each unit appearscin ( 1 ) of the X, ’s each unit contributes

its value that number of times in the sum }_ X, . Therefore
i

N -1
X = X
[Z ik (k*l)
and $2 can be written as
2 . 2 N 12 2
1 1 -
S =z 2 Xf*_E(k-IJ X
Because X is assumed known, an unbiased estimator of $?2is
A a 2 N S
_ 1 _ 1 -1
§$=¢1Cy x, C(HJX]
i

2

S x? (&
- E X [N XJ
Similarly, using the indicator t, we note that

2
n N N oW
E[Z y‘} :Z y?”x(k)+2 Z y.¥,®, (&)
i i [ ¥
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Hence
¥

y= Z % (wZ Z '““"’(’*

is an unbiased estimator of T2. Assuming § and §2 independent, and employing t; we
finally arrive at
y? NE Sl\2
v (T)— 2(1 “(k))”é* ZZW (x, (0 —7 (O, (0) A A
i i k X

which is an unbiased estimator of V* ().

7. Other Versions of T

Other estimators for T that are versions of T may also be suggested. The first

nx;
version is obtained by substituting — for ny, in (4.7) to get the estimator.

Xy

n

P X Y (71
:_"ZX_. 7.1

The advantage of this estimator is that it enables us to make use of standard
results in the theory of ratio estimators. Thus the expectation of T (within and over
the S, 's} will take the form:

Ed )= xR

where R is the expected value of a ratio in simple random sample of size k from the
target population (U). The variance of T’ may be obtained by using

A X2 A v X T
Vk(T)—E X 4 ( )t L X,k (7.2)
k

where E, & V, means taking expectation and variance over all groups of size k
respectively, and
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X 2y
A, i i
T n z X

i=1 i

K
T, = 2 Y
izt

A second estimator, also a version of T, is obtained by assuming Lahiri-Midzuna

n
[12,13] scheme in which the inclusion probabilities are proportional to }. x. If

n

LX,

in (4.7) we substitute for m, we get the estimator.

i

The expected value of T* is approximately XR.

Xy

AT

X (7.3)

A third version of T is obtained by simply substituting k/N for & and nx/X, for
m, in (4.7} to get

f" 5%2 y.'/mi

which, though slightly inferior, yet unbiased.

The main problem with the estimators T”, " and 1" is that the explicit forms of
their variance have not yet been derived. It is therefore difficult to assess their rela-
tive precision. The three estimators are suggested to me by a referee to whom I am
grateful.
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8. Concluding Remarks

In the preceding discussion, an attempt is made to generalize the Horvitz -
Thompson estimator, T‘HT, 50 as to incorporate the situation in which units are
exposed to sampling with preassigned probabilities. The proposed estimator T,
seems to provide small bias and high precision, assuming x and y proportional, if §*
is small i.e if there is little variability between the exposed (actual) populations S,
It is however important to remember that, apart from the approximation used, the
extend to which we can rely on results about bias and precision of T depends on the
validity of the assumed model.

n
It is informative to view ‘T from a different angle. The estimator T} = Z y,/m,,

1
assuming (4.4), estimates the total of §, and not U, and hence it underestimates T.
By dividing it by e, the ratio of the total of x in §, to that in U, underestimation is

1. . .
reduced. The factor = in T thus, in a sense, works as an inflator that helps compen-
sate for the underestimation incurred when using T,; alone.

A practical implication of the preceding discussion is that if the actual popula-
tion differs from the target population, and if exposure probabilities are equal, then
Ty will no longer be unbiased with small variance. This is so even if (4.4) is satisficd
and x and y proportional. The extend of the bias and precision in T depends on the
relative sizes of the actual and target populations as well as on inter-actual population
variability.
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