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Abstract. A Dynamic Simultaneous Transportation Equilibrium Model (DSTEM) that can predict trip
generation, trip distribution, modal split, and trip assignment on a transportation network at any period of
time is developed. The DSTEM model is an extension (time dependant) of the static Simultaneous
Transportation Equilibrium Model (STEM) developed by Safwat and Magnanti. We first formulated the
STEM as a fixed-demand traffic assignment model by using a modified network representation where the
basic network is augmented with virtual (dummy) links to represent several choice dimensions. We then
expanded the augmented network to represent different time periods following the procedures suggested by
Drissi-Kaitouni and Hameda-Benchekroun. The resulting fixed-demand traffic assignment formulation for
the "expanded dynamic'" network was then shown to be equivalent to the proposed DSTEM. Hence, the
DSTEM formulation can easily be solved by any of the available methods for solving static fixed-demand
traffic assignment models.

Introduction

Interest in dynamic transport models to estimate and forecast urban daily traffic flow
patterns during short periods of time ( e.g., peak periods) has been progressively
increasing over the last decade for several legitimate reasons. First, it is believed that
dynamic models would generally produce more accurate estimates and predictions
compared with static models [1]. Second, the genuine interest in Intelligent Vehicle-
Highway Systems (IVHS) made it more compelling to obtain and analyze real-time
information on traffic flow patterns in urban areas and their temporal variations during
peak periods. The use of dynamic models would certainly allow better utilization of the
available real-time data. Third, urban traffic congestion is by its own nature a short-term
dynamic phenomenon. The rate of traffic flow into the network increases over time
until it reaches a peak rate which may be maintained for a certain period of time (usually
short duration), then begins to decrease and so on for different times during the day at
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different locations on the network. A good review of research progress on dynamic
transport models may be found in DK-HB [2] who summarized their review as follows:
"The seventies have been a transition period between heuristic models (where the demand
is assigned to instantaneous minimum cost paths), and optimization models that take
into account the demand over the whole study horizon of time, but all of them
incorporate important limitations (only one destination; unrealistic conditions on the cost
functions so that the flow 'reaches" the destination; possible violation of the link
capacities, etc.)." In their paper, DK-HB [2] proposed a Dynamic Traffic Assignment
Model which is mainly based on the assumption that the time spent by a vehicle on a
link may be decomposed into a fixed travel time plus a waiting time. The fixed travel
time corresponds to the free or uncongested travel time over the link. Then the vehicle is
put in an exit queue (which resides on the same link) until it becomes possible to enter a
forward link; this decision is based on the links costs and their capacities. They showed
that their model leads to a dynamic network structure (a temporal expansion of the
original (base) network, including the queues). This dynamic network is the adaptation of
those networks of Ford and Fulkerson [3], Fulkerson [4], and Zwack and Thomposon [5].
They incorporated explicit link queues (rather than node queues in the Zwack and
Thomposon's model). Therefore, according to their formulation the Dynamic Traffic
Assignment Problem ( DTAP) with fixed demand may be viewed as a "simple" Static
Traffic Assignment Problem ( STAP) over the expanded network. Hence all the methods
developed for the STAP over the past 40 years may be used to solve the DTAP.

In this paper, we apply the same approach suggested by DK-HB [2] to a model
which combines additional three dimensions with traffic assignment. The Dynamic
Simultaneous Transportation Equilibrium Model ( DSTEM) that we propose in this
paper can predict trip generation, trip distribution, modal split, and traffic assignment
simultaneously over a period of time (e.g., during peak periods). The DSTEM is a time-
dependant extension of a static Simultaneous Transportation Equilibrium Model ( STEM)
which was recently developed by Safwat and Magnanti [1].

The static STEM model belongs to the class of transport equilibrium models
which are cast as equivalent optimization problems. The first of such models is the
elastic demand traffic assignment problem which appeared in the work of Beckmann et al
[6]. In this problem, the number of trips between each origin-destination pair is a
function of the travel time between that pair. Beckmann's model was cast as an
equivalent optimization problem that when is being solved yields the desired transport
equilibrium solution. This basic equivalent optimization formulation has several
modeling enrichments. Evans [7] extended the formulation to include trip distribution,
assuming fixed trip generation and an entropy model for trip distribution. Using the fact
that an entropy distribution model implies a logit mode-split model, Florian and Nguyen
[8] extended the formulation to include modal split. More recently, Safwat and Magnanti
[1] further enriched the behavioral features of the equivalent optimization approach. In
their model (i.e.. the STEM) trip generation can depend upon the system’s performance
through an accessibility measure that is based on the random utility theory of users’
behavior (instead of being fixed) and trip distribution is given by a more flexible logit
model based on the random utility theory (instead of being given by a less flexible
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entropy model). In practice, the STEM model was applied to real-world transportation
systems. These are the intercity passenger travel in Egypt (Safwat [9-11]) , the large-scale
urban transportation network of Austin,Texas

(Safwat and Walton [12]), and the urban transportation network of Tyler,Texas (Hasan
[13]). Moavenzadeh, Markow, Brademeyer and Safwat [14] included an extended version of
the STEM model as a central component of a comprehensive methodology for intercity
transportation planning in Egypt. This methodology has been used in several case studies
involving multimodal transportation of passengers and freight in Egypt (Intercity Project
[15]). The STEM model may be solved by globally convergent and efficient algorithms
(Safwat and Brademeyer [16]).

In the next section of this paper, we describe the static STEM model and its
formulation as a fixed-demand traffic assignment problem over a supernetwork. In
section 3, we propose a Dynamic STEM (DSTEM) model. The DSTEM is formulated as
a fixed-demand traffic assignment problem over an expanded supernetwork which
represents the temporal variations of traffic flow patterns over time. Section 4 includes a
summary and conclusions..

2.The Static Simultaneous Transportation Equilibrium Model (STEM)

In this section, we state the underlying assumptions of the STEM model and
describe its formulation as a fixed demand equilibrium problem by using a modified
network representation. In other words, the basic network is augmented with virtual
(dummy) links to represent several choice dimensions. This augmented network is called
a supernetwork. The supernetwork representation reduces the problem of solving trip
generation, trip distribution, modal split, and trip assignment simultaneously (jointly) to
that of finding the fixed demand user equilibrium flow pattern over a single supernetwork
(see Sheffi [17; p. 231] for more details on the supernetwork concept).

We first introduce the following notations:

b,b . ‘ . .
(N, AD), a basic network (i.e., any transportation network) consisting of a set
b b ...
N~ of nodes and a set A~ of links;
I, the set of origin nodes (Nb o)
i, an origin node in the set I ;
Di \ the set of destinations that are accessible from a given origin 1
b b
(N" 2 D, )
. T b
I a destination in the set Di )

P, a simple (i.e., no node repeated) path in the network (Nb,Ab);
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Rb, the set of origin-destination (O-D) pairs;
Pij , the set of simple paths from origin i to destination IB
b . .
P, the set of simple paths in the network (Pb= { Pli)j 01
el,j eD‘i’ 9
o b
a, a link in the set A™;
f’l , flow on link a;
h the flow on path p where f =N\~ 8, h
p’ patp 2= Bap by
1, if link a belongs to path p;
6011 = .
0, otherwise
Ca(fq) , the average cost ( travel time )of transportation on link a;
Cp the average cost of transportation on path p from a given j ¢ [
. . b
toagiven je D, where Cp= z Sap Ca ;
aeAb
uij , the average minimum "perceived" cost of transportation between

origin i and destination j .
2.1 A STEM model

In this subsection, we give a brief description of a STEM model. For more
details see Safwat and Magnanti [1].

G. =a S. + E. Viel
1 1 1

Si=max{O3Ln Zexp(-euik+Ak) } Viel

e
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G.e -0 u..+ A.
oo i Xp ( i i ) v U c Rb
1 Z exp(—@uik+Ak)
keD?
c =1y if hl, >0 upe Pb
r 2uy if h,=0 P
C Sap C (f e Pb
P Z ap C,(1) VP
aeAb
where

G.= the number of trips generated from origin i
1

T.. =the number of trips distributed from origin i to destination j
1

S. = an accessibility variable that measures the expected maximum utility of travel on
i

the transport system as perceived from origin i
E.= acomposite measure of the effect that the socioeconomic variables, which

are exogenous to the transport system, have on trip generation from origin i:
A.= acomposite measure of the effect that the socioeconomic variables, which are

exogenous to the transport system, have on trip attraction at destination j;

o = a parameter that measures the additional number of trips that would be
generated from a given origin i if the expected maximum utility of travel, as
perceived by travellers at i, increased by unity;

® = a parameter that measures the sensitivity of the utility of travel between any
given origin-destination pair ij due to changes in the system's performance
between that given O-D pair.

The basic assumptions of this STEM model may be summarized as follows:

(1) Trip generation. G; , is given by any general function as long as it is linearl
p g i g y any g g y
dependent upon the system's performance through an accessibility measure, Sj,

based on the random utility theory of travel behavior (i.e., the expected maximum
utility of travel).

(2) Trip distribution, Tij’ is given by a logit model where each measured utility function
includes the average minimum perceived travel cost, ujj as a linear variable.

(3) Modal split and trip assignment are simultaneously user optimized. Notice that the
STEM framework allows for the modal split to be given by a logit model or to be
system optimized together with trip assignment.
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2.2 An Equivalent Convex Program (ECP) for STEM
Consider the following optimization problem

2
M J’ L &3 N
1n1mlzez G, dw+e [2 S} +aS;-(aS +E)In(aS, +E)]
aeAp,
1 S A .
+ 3 zb Tjin Ty - AjT, - T,
ijeR
subject to
zTij=aSi+Ei Viel
jer
1
b
Z by =Ty VijeR
pEPij
Si >0 Viel
. b
TijZO VijeR
b
h =20 V pe P
p
f =\"84ph '1eAb
2™ %ap vaens

Safwat and Magnanti [1] proved that under mild assumption on performance functions and
non-negativity and inequality assumption on demand parameters (i.e., 6>0, Ei 20>0), the

ECP has a unique solution that is equivalent to equilibrium on STEM.

2.3 The formulation of STEM as a Fixed Demand User Equilibrium
(FDUE) Problem

In this Subsection, we show that by a modification of the basic network we can
formulate the STEM as a FDUE problem.
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The required modification is shown in Figure 1; the example network (consists
of two origins and three destinations) is augmented by :

1) dummy links leading from each destination node j(EDE) to a dummy destination node,
denoted by d? E DS ( DS the set of all destinations of the supernetwork, I

—IDl).There is one dummy destination node associated with each origin node. The

flow on each of the dummy links, from j to N , is Tij and the equivalent travel

time(cost) on each of these dummy links isé— [In Tij - Aj ].

. . - S
2) dummy links leading from each origin | e [ to the dummy destination node di S

s . . s . .

D”. The flow on each of these dummy links, from i to dl , 1S ei=Mi-Gi where M. is
i

the maximum number of trips which may be generated from origin i. The travel

time(cost) on each of these dummy links isé' [In ( Mi —ei) - é(Mi -Ei —ei) ].

Basic Network 0’\
(%

Fig. 1

Consider now a fixed demand user equilibrium problem defined over the modified
supernetwork where the fixed demand is Mi which must be assigned between i and diS

for every i. This problem can be formulated as follows:

FDUE:
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f T..
a | 1]
Minimize ZhTe- ¥ fC (wdw +5 ¥ JCinewy - ap dw
aeAb 0 ijeRb 0
e.
i
+1—2 f[ln(M-w)--L(M E d
o i o M- Ep-w) Tdw
iel o
subject to
- . b
Z hp _Tij Vije R (1) (Uij)
b
pePy;
jeD?
h >0
p
b
V pe P (3) (wp)
T..>0 Y ij Rb 4) (m..)
ij 1 € 4 ij
e. 20 Viel (5 &)
where
b
fa=z Sap hp v acA .
p

It is easy to show that the FDUE problem is a convex program and has a
unique solution under the same assumptions for ECP of STEM (i.e., 6>0, Ei 2a>0).

Next, we show that the Karush-Kuhn-Tucker optimality conditions for the FDUE
problem are equivalent to STEM.

2.4 Equivalence between STEM and the optimality conditions of FDUE

Let u.. forjj b i a - brc for jj band)x
€ i jeR .V foriel. pfoxpeP,ij ijeR ; for

i € I denote. respectively, the Karush-Kuhn-Tucker multipliers associated with the
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constraints (1) - (5) then the optimality conditions are given by the constraints (1) - (5)
together with the following conditions:

p i P .
vpep (©
LimT, A +u, +7. -7 LR
Lim(M <) - ~(M-E, -) 1+ v -} - ®)
g [In(My-ep) - o (M= By 7 Y -4=0 Viel
h ® =0 and ©_>0 v b )
p“p~ an p= pe P
T. = and i b (10
ij Ty =0 =0 Vije R )

First, notice that the constraint (2) implies the trip generation conditions of

STEM model. Since
2 T..+e = M.
ij i i
. b

JEDi

2 Tij+(Mi—G,l)= M.1

. b

JEDi

2 T.. = G. =aS. +E.. (12)

1j 1 1 1
. b
jEDi

Second, since Tij >0 Vije Rb at the optimum solution, then nij =0V ij e
b
R -
Hence, (7) implies
T.. = -0 Y. - .. i)
i Exp(- 0 Y, ) Exp(- 0 uIJ +Aj) (13)

From (8) we obtain
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1 1
Limee)-Le -k »
0 PGB Ty -0

[ln(ozSi +Ei) -Si ]+ i _Xi=o

D=

Exp(-6 A',i ) =( O(Si + Ei) Exp(-(Si + 6 )»i )). (14)

Substituting the right hand side of (14) in (13) gives

Exp(- 6 uij + AJ' )

T.. = . .
ij (asl * El) Exp( Si + 6 )Li ) (15)
. - . b .
Summing (15) over all JEDi and using (12) shows that

Exp( Si+9ki) = Z Exp(- 0 uij +Aj) . (16)

jeDi
Therefore. at optimality (15) is given by
Exp(- 6 uij + Aj)

Z Exp(- 0 uij + Aj)

T.. = (O(Si +Ei)

ij (17)

jeDi

which is the logit trip distribution of STEM model.

Third, the optimality conditions (5), (11) imply that ?Li = 0 whenever

€ >0 and therefore,(16) reduces to

Si =In 2 Exp(- 6 uij +Aj) . (18)

JGDi

Fourth, we show that the optimum solution of FDUE implies a user optimized
modal split and traffic assignment on STEM model. This results from optimality
conditions (3), (6). (9) since wp =0 ifhp> 0 and, therefore,
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C = u... Moreover, if h =0, then®_> is i e C =u.. +®  2u..
P ij P p_Oand this implies p

Thus, FDUE and STEM are equivalent.
3. A Dynamic Simultaneous Transportation Equilibrium Model (DSTEM)

In this section, we begin by stating the assumptions underlying the DSTEM
model. We then describe the dynamic flow conservation constraints. Hence, we describe
the corresponding temporal expanded network. Finally, we present the mathematical
model. Our presentation closely follows that of Drissi-Kaitouni and Hameda-Benchekroun
[2] and is based on the same assumptions mentioned in section 1, where we incorporated
virtual (dummy) links to represent several choice dimensions for solving trip generation,
trip distribution, modal split, and trip assignment simultaneously.

Before we describe our DSTEM model, we introduce the following notations for

S .S - S. S,
the supernetwork (N",A”) shown in Figure 1, where N is the number of nodes and A" is
the number of links of this network.

We divide the set of nodes into three types:

(1) I . the set of all origin nodes.

(i) Db . the set of all destination nodes of the basic network Db = uU{ D:) ,ie I}
S L s . - b S
(iiiy D7, the set of all dummy destination nodes di yiel. ThatisN =N uwD".

Also, we divide the set of links AS into three types :

(1) Ab . links of the basic network; these links carry the flow fa v ae Ab.

.. € . .. . . . S S
(i) A . links that connect each origin i € I to the dummy destination di e D

these links carry the flow e Vv iel

oD .. . .. .. b .

(i) A . links that connect each destination JEDi of the basic network to the
dummy destination d? e D’ v i € I; these links carry the O-D flow Tij . that

b O-D

sAS=A’uaSuaT.

3.1 Dynamic flow conservation constraints

Let A® be the set of links of the supernetwork, and T be the time horizon (number
of periods t =1,2,3,....,T). Thus
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(i)  foreach aeAb at each time period t , let

Xy - the total flow on link a at the beginning of period t,

u; - the flow that enters link a during period t,

v; . the flow that exits link a during period t,

q; : part of the flow x; ready to exit from link a at the beginning of
period t,

T © the fixed travel time on link a measured in number of periods of time.

. . b . .
Then, the constraint for link ae A~ at period t is

(t+1)  t (t-Ta) t b
4d, =9, tu, "V, v acA .(19)

.. e . .
(1) Foreach aeA™ ateach time period t ,let

Ya : the total flow on a link a at the beginning of period t,

G:l : the flow that enters a link a during period t,

\7; : the flow that exits a link a during period t,

a; : part of the flow y; ready to exit from a link a at the beginning of
period t,

}\a . the fixed travel time on a link a measured in number of periods of time

. . e . .
Then, the constraint for a link ac A™ at period t is

~ - ~(t-A .
q(t+1) qt N u( a) t

e
a a N -V, vaeA (20)

(i)  Foreach aeAO_D at each time period t let

z : the total flow on a link a at the beginning of period t.
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Nt . . .
u, - the flow that enters a link a during period t.

"t . . . .
vy - the flow that exits a link a during period t,
A t . . L
q - part of the flow z_  ready to exit from a link a at the beginning of

a a e

period t,
v - the fixed travel time on a link a measured in number of periods of time

a

Then, the constraint for link aeAO_D at period t is

N+ A A(t-Ha) At 0O-D
q, =q, tu -V, v aeA . 20

. t . . . . | S
(iv) Let Mi be the demand at origin node i e I during period t. Mi joins the

t . . . t
queue Qi at node i during period t, and let m, be the part of that demand that

enters the network during this period. Then, the constraint for the input flow is

Q" - qQl +M - m, viel. 22)

(v)  The transfer of flow at nodes must satisfy the condition that the arriving flow
is equal to the existing flow at any period of time t. This can be expressed by:

z t - E - kel AS @3
v +my = uy +uak v kel.a € (23)

aeBk aeAk
t t A b
)T VTR S yked®
b O-D
aeBk dEAk aeAk
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sz = Zuta vkel.ykeD® | ykeD® (26)

b b

aeB K acA K
where

b . L . b b -
Bk is the set of links in the basic network (A~ > Bk ) that arriving at node k

b . . . . b b -
Ak is the set of links in the basic network (A~ o Ak ) that exiting from node k
BS_D is the set of links in the supernetwork (AO_D -} B(E_D ) that arriving at node k
AS_D is the set of links in the super net work (AO_D o AE—D ) that exiting from

nocke k

O;( is the flow that exist super destination k.

3.2 Computation of Hyo )La

Step 1: Given tg =1, Vva eAb, compute

u %(theminimumtraveltimebetweenoriginianddestinationj)for the basic network.

Step 2: Based on ug , compute T% as follows:

S? = max {0, Ln z exp(—eu(i)j+Ak) } Viel

G, =ao S. + E. Viel
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0 G? exp(-Gu?.+A.) b
T - J vije R
2 exp(-Gu?k+Ak)
keD?
Step 3: The fixed travel time on O-D links is
1 0 O-D
== - A .
B 6(lnTlJ Aj) va e

Step 4 Compute e(i) = Mi - G? v i€ I, then the fixed travel time on

. e .
alink a €A 1s

1 0 1 0 e
)\a=9[1n(Mi-ei)-a(Mi—Ei—ei)] va eA .

3.3 The Static Temporal Expanded Network (STEN)

In this subsection, we construct the temporal expanded network G = (A, N)
that corresponds to the flow conservation constraints (19) - (26) of section 3.1.

Let 611 be the length of the shortest path (shortest according to the free travel

. . . S * . 1 .
time) from the origin node n. ,i € I, to node nk ,keN", and let q( = min Ok , that is
! iel
&

Gk is the minimum time required to reach node n from any origin n. ,i €l.
1

Thus, for t < Sk ,no flow will enter node n, . Now, we construct the network G as

k
follows:

(1)  Nodes:

Each node nk ke Ns, of the supernetwork is expanded to (T+1) nodes nL )

t=0.1.2.... T .ke N°. of the expended network G .
(2) Links:

*

(1) For each link a = ( ni , nj ) € Ab we construct, for each t - ta > Gj
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t
- one node l ,

(t‘t) t

-onelink (n & ] ),
i a

- one link (l[ . nF ) and
a )

“one tink (1} 18 <.
These three links correspond to the variables u(t—ra) . v; and q(t D
reﬂpectlvely and constraints (19) correspond to the (srdnc) ﬂow conservation constraints at
the nodes l La € Ab . t=0.1.2......T. such that t - T > 9

(i1) For each link a = ( ni , nj ) € Ae .1elje DS, we construct, for each

(-0 20,
a J
~t
- one node ]q .
. ()~
-onelink (n & | 11 ).

. ~t t
- one link (1a . nj )‘(md

.Ti‘“)) ift<T.

- one link (T,tl

t-Ag ~ ~
- These three links correspond to the variables u( v . vi and g (Hl)

a

respectively. and constraints (20) correspond to the (static) flow conservation constraints

at the nodes thl ,a € Ae , t=0,1,2......,T, such that t - ka > OJ

(iit)  For each link a = ( n. . nj ) € AO_D , 1€ Db.j € DS. we construct, for

each t- Ry > 9}

t
- one node ]'1 ,
. (-1 ) o
-onelink (n & ]

i a

oot
- one link (l,1 . nj ) and
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A, A
conetink (1 1Y) i<,
. t- ~ A(t+1
These three links correspond to the vanablesﬁi Ma) . v; and q;+ )

respectively, and constraints (21) correspond to the (static) flow conservation constraints
at the nodes

A %
l; ,a € AO_D ,t=0,1,2,....,T. such that t - ua > Oj

(3) Origin nodes:
For each origin node ni , ie 1 ,we construct, for each t =12, ...... T:

Lt
- one node noos

. L t t
- one link ( nooLon ) and

L, L
¢ .n(iHl) ) ift<T.

- one link ( n,
. . t (t+1) .
These two links correspond to the variables m, and Qi respectively. and

L ¢
constraints (22) correspond to the (static) flow conservation constraints at the nodes no,
ie 1t=0,1.2......T.

(4) Destination nodes:
L s s
For each super destination n o k= di e D" we construct:

-one noder, and

k

. t
- one link ( nk _— y for each t=0.1.2,....,T. such that t = Gk

. . t .
These links correspond to the variables Ok , t=0,1.2..... T, where ris augmented

destination for all periods for super destination node oy -

3.4 An illustrative example
Consider the simple basic network depicted in Fig. 2. This network includes one
O-D pair (from node 1 to node 3) and two links. The fixed travel time on link 1 is Y=

2 and the fixed travel time on link 2 is T, = 1. The supernetwork representation of this
network is shown in Fig. 3 where we added two links, one O-D link ,(i.e., link 3),
connected node 3 to the super destination node dj = 4, and the other link, (i.e., link 4),

connected origin node 1 to the super destination node 4.
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Now, we compute the fixed travel time on link 3 , i.e., My and the fixed travel

time on link 4. i.e., k4 Let6=5,0=26, A2 =2, and E1= 11, then

u(l)3 = t1+12=2+1=3

S(]) =ln[exp(-9u13 +A3)= Infexp(-5(3)+2)]=.5

G(l) =aS, + E1=2.6(.5)+11=12.3

™, =123

H3=§(]HT13 —A3) = %(ln(lZ.B) -2) =1.019=1.0
)\3=é[ln(Ml-e? ) - (—i—-(Ml—El -e([)) ] = é—[ln(G(l) ) -
=G E )]

! 1
hy= 5 [In(123) - 57=(1.3) 1= 40191 ~4.0

The links travel times are shown in Figure 3 on each link.

Figure 4 shows the corresponding STEN for the supernetwork in Fig. 3.

O @ ) O 5

Link 1 — Link 2

(4

Link 4

@ AL D W

Link 1 N Link2 "~/ Link3
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Fig. 4

3.5 Capacity constraints

1) For each link a e Ab R

(1) The upper bound on the total link flow:

x <1t C vV ae Ab , t=0,12,...T



120 Mohamad K. Hasan

where Ca is the capacity of link a, expressed in vehicles/period. These
constraints can be written as follows:

t
vty <1 c yaea® t-012..T. 7)
a j=t-T a a a

a

(i) The upper bound on the entering flow:

t

u, < Ca vae Ab ,t=0,1,2,.....T. (28)

(iii) The upper bound on the exiting flow:

Vo< C, vae A’ t=0.12...T. (29)

a
2) For each link a e Ae ,

(1) The upper bound on the total link flow:

t = €
S )x =U.
Ya a Ca vae A ,t=0.12..,T
where 6 n 6 a = ( M1 - El ) a, € Ae .1 €l, is the maximum trip on link a,,

1
. . . * . . . .
expressed in vehicles/period , M,‘ is the maximum number of trips which may be

generated from node i1 €I expressed in vehicles/period, Ei is the minimum number of

trips which can be generated from node i €I expressed in vehicles/period . These
constraints can be written as follows:
~t i

G o+ L@ <a € vaeA® 1-012..T (30)

i . a a
J=t )a
(i1) The upper bound on the entering flow:

io<cC vaeAS | 1=012,..T 31)

Vo< vaeAS | t=012...T. (32)
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3) For each link a € AOP .

(1) The upper bound on the total link flow:

A
t O-D
Yy < “a C a vaeA ,t=0,1,2,.....,T

A

A
where C = C

a di

which may be carried on link a, expressed in vehicles/period.These constraints can be

* O0-D . . . -
= Mi . a4 € A ,i el is the maximum number of trips

written as follows:

. A
?fl b vl Do< m C vae A0P ,t=0.1,2,....T. (33)
d J=t_ua d d
(i1) The upper bound on the entering flow:
A
2 < cC vae AP (on2T G4

a a

(11i) The upper bound on the exiting flow:

A
VAF\ <c, vaea2P o021 35

3.6 The mathematical model

In this subsection, we formulate the mathematical model of DSTEM. The model
is essentially a fixed demand user equilibrium traffic assignment model over the STEN
network.

Consider STEN G =(A,N) and let Mit be the demand at period t from
origin node i € I to destination node j = diS (rj in the expanded network) ; M; must be

assigned on the paths p € P:j where Pitj is the set of paths between the nodes ni[
and node rj in the STEN G. Hence, the static traffic assignment problem over STEN is:
f

a

Minimize S Jr Sq(w) dw
acA 0

subject to
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thp=Mi Viel,t=0,12,....T
pePij
t
hp20 Viel, VPEP . 1=0.1,2,.....T
f = T d h v acA
& el t=0 t P P

eP..
1]
and the capacity constraints (27)-(35), where

hp is the flow on path peP, and P the set of all paths in G
(ie. P=U{P; ciel.jeD] 1012, T},
f{l is the flow on link ae A ,
S'I is the travel cost (time) on link ae A as a function of the flow (fa ) on
that link.

If we refer to the unit travel cost on link ae A by the unit travel time, thus,
when there is no congestion on the link, in general, this unit travel time is constant
related to the length and the physical characteristics of the link. But when congestion is
present, the unit travel time includes also a nonlinear delay component that depends on
the flows and capacities of the links of the network. Therefore, in our model, we refer to
the constant part by the fixed travel time on the link (i.e.. T }\a . orp periods),

whereas we refer to the nonlinear part of the link unit travel time by the time spend in the

. ~t A O-D t .

link queues (q; s aeAb sdy, - aeAe ; q; , aeEA ; or Qi , 1el, t=0,1,2........ -
~ N . .

The time spend by a vehicle in a queue q; , q; s q; , or Q; is exactly one period of

1 ~(t+1
time after which it either exits the link, or joins the next link queue q( +D s q;+ )

t+1
ag+) (t+1)

,OrQi

travel costs lead to the following objective function:

Minimize ZZJI dw + ZZJX dw + z Z juddw

aeA"t=0 ¢ aeAt=0 ¢ aeA® P =0 o

in which another period of time will be spent, and so on. These unit

CH

F Y fer Sy fawr ¥ S fdw

aeA"t=0 aeA®t=0 o 2eA%P =0
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T Q

+ 3 de (36)

iel 1=0 ¢

The capacity constraints are not often used as explicit constraints in network
equilibrium models: instead capacities are implicitly expressed by a nonlinear component
in the cost functions. Therefore,we will replace constraints (27)-(35) by a penalty term
that we add to the objective function (36). Hence our model takes the following form:

T t T t T N
Minimize Y Y Tou >y , LT‘{ + S Moy
= ‘ - =l ‘ ‘ -I = ) ‘ ‘
aeAbl 0 aeALt 0 zleAODt (
T t T ~t T At I t
fY Yd ey Tads Y oz adey v od
= = - = 1 =(
ueAb t=0 aeAe t=0 aeAOD t=0 el =0
1 2 2 2
+ > > v max (().uz - C’l) +max ((),v‘ll - C,l) + max ((Lx‘[l : r"(“l) |
ue/\b t=0
1 4 o~ 2 4 o~ 2 ¢~ 2
+ Y Y v max (Ou, -C (1) +max (O.v, - C '1) +max (O0.y, /Lq(f ) |
- a
aeAe =
T NN 2 AN N2 )
+ So0Y v max (OAuE‘ -C q) +max (O‘VE -C '1) + max (().zttl - “’1(‘ '1) ]
O~I)1:() « « [e «
acA

subject to

t
2 hy = My Viel =002 .. T

peP
N t —
hy =0 Viel.VPEP; - 1=0.1.2......1
T
£ =ZI 20 > Oap hp v agA
el 1= cpl.
1

where v is a large constant.

This is clearly a fixed-demand user equilibrium traffic assignment model whose
solution satisfy the assumptions of the DSTEM proposed in this paper.
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4. Conclusion

Dynamic transportation models have drawn much attention in recent years
because they more accurately represent urban traffic patterns during peak periods. This is
particularly important in view of the growing focus on IVHS and the need for better
utilization of real-time traffic flow information.

DK-HB [2] formulated a dynamic traffic assignment model (DTAM) as a static
fixed-demand traffic assignment problem over a temporal expanded network which when
is solved would yield the desired solution for the DTAM. On the other hand. Safwat and
Magnanti [1] developed a static STEM model which can predict trip generation, trip
distribution, modal split and traffic assignment simultaneously on transportation
networks. The STEM was formulated as an equivalent optimization problem which when
solved would yield the desired transport equilibrium simultaneously.

In this paper we have developed a Dynamic STEM (DSTEM) which is
essentially an extension of the static STEM following the procedures proposed by DK-
HB [2] to develop their DTAM. First, the STEM was formulated as a fixed-demand traffic
assignment problem defined on a supernetwork, then the DSTEM was formulated as an
equivalent static traffic assignment problem defined on an expanded temporal network
which can be easily solved by any of several available algorithms.

This DSTEM model should represent a significant enhancement of the predictive
power of several dynamic transportation models. It is highly recommended to apply the
DSTEM to real-life urban traffic congestion problems to demonstrate the enhanced
accuracy of the model and hence its usefulness to be incorporated into the recent efforts to
develop and apply advanced IVHS systems world-wide.

We would expect the network size to increase considerably and the model to
inherent many of the advantages as well as the disadvantages of the STEM, DTAM, and
many other related models. However, in view of the simplicity of the solution algorithm,
the continuing advances in computational speed, and the reasonableness of its underlying
assumptions, it is expected to be practical and desirable to implement the DSTEM to
many real-life situations.

References

[1] Safwat, K. N. A. and Magnanti, T. L. " A Combined Trip Generation, Trip Distribution, Modal Split
and Traffic Assignment Model."Transportation Science, 18, No. 2 (February 1988), 14-30.

[2] Drissi-Kaitouni, O. and Hameda-Benchekroun, A." A Dynamic Traffic Assignment Model and a
Solution Algorithm." Transportation Science , 26, No. 2 (May 1992), 119-128.

[3] Ford, L. R. and Fulkerson, D. R. Flows in Networks. Princeton, New Jersey: Princeton University

Press, 1962. 3
[4] Fulkerson, D. R. "Studies in Graph Theory, Part 1."Studies Math. , 11 (1975). )
[5] Zawack, D. J. and Thompson, G. L. " A Dynamic Space-Time Network Flow Model for City

Traffic Congestion."Transportation Science, 21, No. 21 (August 1987), 153-162.



[13]

[14]
(5]

[16]

[17]

A Dynamic Simultaneous Transportation Equilibrium Model 125

Beckman, M.; McGuire, C. B. and Winston, C. B. Studies in the Economic of Transportation. New
Haven, CT. : Yale University Press, 1956.

Evans, S. P. "Derivation and Analysis of Some Models for Combining TripDistribution and
Assignment."Transportation Research,10, No.1(1976), 37-57.

Florian, M. and Nguyen, S. "A Combined Trip Distribution, Mode Split and Trip Assignment
Model."Transportation Research, 12, No. 4 (1978), 241-246.

Safwat, K. N. A."The Simultaneous Prediction of Equilibrium on Large-scale Networks: A Unified
Consistent Methodology for Transportation Planning." Ph.D. Thesis, Department of Civil Engineering,
Massachusetts Institute of Technology , Cambridge, Massachusetts, 1982.

Safwat, K. N. A. "Application of a Simultaneous Transportation Equilibrium Model to Intercity
Passenger Travel in Egypt."Transportation Research Record, 1120 (1987), 52-59.

Safwat, K. N. A."Computational Experience with an Application of a Simultaneous Transportation
Equilibrium Model to Intercity Passenger Travel in Egypt." Transportation Research Record,
1120 (1987), 60-67.

Safwat, K. N. A. and Walton, C. M. "Computational Experience with an Application of a
Simultaneous Transportation Equilibrium Model to  Urban Travel in Austin, Texas. " Transportation
Research, 22B, No. 6 (1988), 457-467.

Hasan, M. K. "Comparative Analysis of Alternative Simultaneous TransportationNetwork
Equilibrium Models." Ph.D. Thesis, Department of Urban and Regional planning, Texas A&M
University, College Station, Texas, 1991.

Moavenzadeh, F.; Markow, M.; Brademeyer, B. and Safwat, K. N. A. "A Methodology for
Intercity Transportation Planning in Egypt." Transportation Research, 17A, No. 6 (1983), 481-491.
Intercity Project Team. " Updating and Application of the Intercity Transportation Model." Final
Report. CUIMIT Technology — Adaptation Program, Development Research and Technological
Planning Center, Cairo University, Egypt, 1986.

Safwat, K. N. A. and Brademeyer, B. "Proof of Global Convergence of an Efficient Algorithm for
Predicting Trip Generation , Trip Distribution, Modal Split and Traffic Assignment Simultaneously on
Large-scale Networks." International Journal of Computer and Mathematics with Applications. 16,
No. 4 (1988), 269-277.

Sheffi, Y. Urban Transportation Networks: Equilibrivm Analysis with Mathematical Programming
Methods. Englewoods Cliffs, New Jersey: Prentice-Hall Inc.,1985.



126 Mohamad K. Hasan

Jal 031 Seals il g3 2

WIaf}LgﬂujxﬂuJLthulejcgsz1JaJw QJJJJ Slolts Ys Jadl g
__JaJrAﬂwa¢quy"éﬁJ’M
(J\i\Q/\Y/\TL;}.:;UJT;)5_A\i\V/O/\.\L;.‘JJL"JJ(-J.E)

@ﬁ@&i@ﬁgéﬂ\()jﬂ\Oj\jdégtﬁégicijiﬂ}h}riﬂﬁ\ob%}.;La.,J\uAL.L-
u%)'w;u%&\w\@jtjwu%)‘&@«&)\r}‘cj)icc)%)\
JY\J&Mu)\yCaw(w)\du\w)a\ux}ﬁcw\m el e sl O
wL}-L&juMCJ}IA&MYJ‘WMJ wbb)uwd,éuﬂo):)bf‘_gﬂ‘usu\
WVMLN\J&J\&MQMdw&wrtwuwxw@”wc}&;\
PRETI{FCORAI PRV JNVEVLIR IO Mrw\)uvmﬂ;ww%ﬂuw &
d)ﬁbwwjaf\swﬁww‘*’ﬂ-\‘d*‘f\“wwﬁwvwd&

o N\p&&&ﬂb:ow\M&U\;,.LUXMU\MJL\JMuL&JLAsz
L@;;ug;w,mwm)\,,!@um&wcﬁ.uwuu RO U PR CJ‘A‘J"'J
.Eﬁu\wu‘)j}‘wdu\cbw\&bbé%iﬁ&}e‘@m\%dw



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



