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Abstract. The objective of this article is to study the effect of wavelet filter on the time series data. By using
wavelet transformation and hard thresholding technique, the ARIMA model decomposed into sum of two ARIMA
models and the relation between sum of square errors due to the ARTIMA model and sum of two ARIMA models
will be discussed. . By using wavelet transformation and soft thresholding technique, the ARIMA model
decomposed into sum of three ARIMA models and the relation between sum of square errors due to the ARIMA

model and sum of three ARIMA models will be discussed.

1. Introduction

The wavelet transform is a powerful mathematical
tool that is receiving more and more attention by the
statistical community. While most work is being done
in the engineering and physical sciences, wavelet
transforms have already proven useful in well
established statistical fields such as nonparametric
regression, classification, and time series analysis.
The ground breaking work of Donoho and co-
workers (Donoho 1993; Donoho and Johnstone1994;
Donoho 1995; Donoho, Johnstone, Kerkyacharian,
and Picard 1995) introduced statisticians to wavelet
transforms in the context of signal estimation and
wavelet shrinkage.

The past two decades have witnessed the
development of wavelet analysis, Donoho and
Johnstone (1995), Johnstone and Silverman (1997),
Nason and von Sachs (1999), Priestley (1996),
Percival, and Walden, (1999), have applied wavelet
theory to the estimation of the functions whose
observations are contaminated by noise as well as
time series analysis either in the time domain or in the
observation are equally spaced and independent.
Most of these applications are based on the
assumption that the observations are equally spaced
and independent. However, for time series data the

observations are likely to be dependent.

In Section 2, a short background on wavelet will
be introduced. In Section 3, Bayesian Wavelet
Shrinkage and Thresholding will be represented. In
Section 4, we study the effect of wavelet
transformation, hard thresholding technique and soft
thresholding technique on the sum of square error for
the ARIMA model. In Section 5, an application is
illustrated by example.

2. A short background on wavelets

In this section we give a brief overview of some
relevant material on the wavelet series expansion and
a fast wavelet transform that we will need latter.

2.1. The wavelet series expansion

The term wavelets is used to refer to a set of
orthonormal basis functions generated by dilation and
translation of a compactly supported scaling function
(or father wavelet), ¢, and a mother wavelet, ¥,

associated with an r -regular multiresolution analysis
of L? (R). A variety of different wavelet families

now exist that combine compact support with various
degrees of smoothness and numbers of vanishing
moments (see, Daubechies (1992)), and these are now
the most intensively used wavelet families in
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practical applications in statistics. Hence, many types
of functions encountered in practice can be sparsely
(i.e. parsimoniously) and uniquely represented in
terms of a wavelet series. Wavelet bases are therefore
not only useful by virtue of their special structure, but
they may also be (and have been!) applied in a wide
variety of contexts.

For simplicity in exposition, we shall assume that
we are working with periodized wavelet bases on [0,
1] (see, for example, Mallat (1999)), letting the
periodized wavelet denote as:

9 ()= 3 by (1) and

leZ

Wfk (t)= > Wik (t —l), for ¢ e[O,l],
leZ i

Where

By (1)=2779(27 1~k

and W (1)= 2j/21//(2jt —k).
For any j, >0, the collection
{¢jok ck=00,,27 — Ly §2 5,20,k =0,1,..,27 1)
is then an orthonormal basis of 1> ([0,1]) .

The idea underlying such an approach is to

* express any function g e L? ([0,1]) in the form

2/01

20)= 3 s 1)

w 2/ 1

+2 2 Budu(t) joz0, tefol]
J=Jo k=0
where
%ok =(2:9;5 > = ;[g (t)8yok (2)dr, jo =0,
k=0,1,..,279 1

and
1

Bix =<g,'/fjk>= [e@)wp ()ar, j=jo=0,
0

k=0,1,.,2" -1

An wuvsual assumption underlying the use of
periodic wavelets is that the function to be expanded
is assumed to be periodic. However, such an
assumption i not always realistic and periodic
wavelets exhibit a poor behavior near the boundaries
(they create high amplitude wavelet coefficients in
the neighborhood of the boundaries when the
analyzed function is not periodic). However, periodic
wavelets are commonly used because the numerical
implementation is particular simple. While, as
Johnstone (1994) has pointed out, this computational
simplification affects only a fixed number of wavelet
coefficients at-each resolution level, we will also
present later on an effective method, developed
recently by Oh and Lee (2005), combining wavelet
decompositions with local polynomial regression, for
correcting the boundary bias introduced by the
inappropriateness of the periodic assumption.

2.2. The discrete wavelet transform

In statistical settings we are more usually
concerned with discretely sampled, rather than
continuous, functions. It is then the wavelet analogy
to the discrete Fourier transform which is of primary
interest and this is referred to as the discrete wavelet
transform (DWT). Given a vector of function values

g= (g (t1)smng (tn ))’ at equally spaced points ¢; ,
the discrete wavelet transform of g is given by:

d=Wg (D

where d is an nx1 vector comprising both discrete
scaling  coefficients, ¢ ;, and discrete wavelet

coefficients, dj , and W is an orthogonal 7 x

matrix associated with the orthonormal wavelet basis

chosen. The c;; and dj are related to their

continuous counterparts ok and By (with an
approximation error of order n‘l) via the
relationships:

dy ~\npy .

Cjok z\/;ajok and

The factor \/; arises because of the difference
between the continuous and discrete orthonormality
conditions. This root factor is unfortunate but both
the definition of the DWT and the wavelet
coefficients are now fixed by convention, hence the
different notation used to distinguish between the
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discrete wavelet coefficients and their continuous
counterpart. Note that, because of orthogonality of

W | the inverse DWT (IDWT) is simply given by:
g=wld 2)

where W denotes the transpose of W .

If n =2’ for some positive integer J , the DWT
and IDWT may be performed through a
computationally fast algorithm developed by Mallat
(1989) that requires only order # operations. In this
case, for a given j, and under periodic boundary

conditions, the DWT of gresults in an 7 -

dimensional vector @ comprising both discrete
cikrk =9,1,..,279 -1 and

coefficients

scaling coefficients

discrete wavelet

d s j=Joswnd —1 K =0,1,..,27 —1.

We do not provide technical details here of the
order n DWT algorithm mentioned above. Essentially
the algorithm is a fast hierarchical scheme for
deriving the required inner products which at each
step involves the action of low and high pass filters,
followed by a decimation (selection of every even
member of a sequence). The IDWT may be similarly
obtained in terms of related filtering operations. For
excellent accounts of the DWT and IDWT in terms of
filter operators we refer to Nason & Silverman
(1995), Strang & Nguyen (1996), or Burrus, Gonipath
& Guo (1998).

2.3. Classical threshold schemes

Since the wavelet representation of many kinds of
function is very economical, it is reasonable to
assume that there are a few large value wavelet
coefficients concentrated near the areas of major
spatial activity, e.g. discontinuities, but the majority
of wavelet coefficients are small. Also, owning to the
fact that the wavelet transform is orthogonal, if the
g; are assumed to be independent Gaussian noise,
then the wavelet coefficients will also be
contaminated with independent Gaussian noise. So in
this case, the empirical wavelet coefficients can be
written as

and d & is distributed as:
7 2

Based on these assumptions, Donoho and Johnstone

(1994, 1995) suggested two types of thresholding
methods: hard and soft thresholding. Hard
thresholding sets all the wavelet coefficients to be 0 if
their absolute values are below a certain threshold
A20:

c@kznlﬁgk)zjmlﬁjm\>z)
(hard thresholding) (C))

Soft thresholding shrinks the wavelet coefficients that
are larger than the threshold by 4 :

a?jk =1, (cijk ) = sgn(cijk )max(O,
(soft thresholding)

ij‘—/l)

Hard and soft thresholdings are illustrated in Fig. (1).

2.4. Choices of threshold

Too large a threshold might cut off important
parts of the true function underlying the data, whereas
too small a threshold may excessively retains noise in
the reconstruction. Universal Threshold Donoho and
Johnstone (1994) proposed the universal threshold:

A=0c2log(n)

When ¢ is unknown, o may be replaced by a
robust estimate &, such as the median absolute
deviation (MAD) of the wavelet cocfficients at the
finest level J =log(N)-1 divided by 0.6745 and

can be expressed as
& =MAD {djk = 1,...,2‘]}/0.6745

3. Bayesian Wavelet Shrinkage and Thresholding
Various Bayesian approaches for thresholding and
non-linear shrinkage in general have been proposed
recently. See for example Chipman et al. (1997),
Abromovich and Sapatinas (1999), Abramovich et al.
(2000), Clyde and George (1999, 2000) and
Johnstone and Silverman (1998, 2005). These
methods have been shown to be effective. In these
approaches, a prior distribution is imposed on the
wavelet coefficients, which is designed to capture the
sparseness of the wavelet expansions that is common
to most applications. The function can then be
estimated by applying a suitable Bayesian rule to the
resulting  posterior  distribution  of  wavelet
coefficients. In general, a Bayesian rule 7(x) is a

shrinkage rule if and only if 7 is antisymmetric and
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increasing on (—w0,) and 0<zyp(x)<x for all
x 20 . The family of shrinkage rules 7(x,#) will be
a thresholding rule with threshold t if and only if

n(x,t)=0 ifand only if |x | <t

A popular prior model for each wavelet coefficient
d j is a mixture of one normal distribution and a

point mass at zero. The normal distribution with large
variance represents the significant coefficients while
a point mass at zero represents the negligible ones. A
hierarchical model can be expressed as:

d g |r; DN (0,27)+(1-7;)5(0) (5)

where r; U Bernoulli (p ;) for different resolution

level j and 6(0) is a point mass at zero. The binary

random variable r determines whether the relevant

wavelet coefficient is nonzero (r; =1), and comes

from an N (0, sz) distribution, or zero(r; =0),

and arises from a point mass at zero. From (3), the
posterior cumulative distribution of d ; conditional

on the empirical wavelet coefficient d jx and o? is

given by
2 2 2
d 3,02 U PGy =1, 02N (—2 ~d ., 5
0'2 +Tj O'2 +7
+(1=Pr(ry = 1{& 1>02)5(0) (6)
The posterior probabilities can be expressed as
~ 1
Pr(ryp =1|d 3 )= —— - (7)
J J 2
1+Ojk (djk ,O )
] 1-p, (024722 242
Ojk (djk ’0_2) _ Pj '(0' j exp(~ 21' 2jk
p; log 20“(c” + rj)
®

3.1. Shrinkage estimates using posterior mean
approaches
Clyde et al. (1998) obtained wavelet shrinkage
estimates by considering the posterior mean.
Assuming that an accurate estimate of the noise

variance is available, the closed form expressions for
the posterior mean of wavelet coefficient d Jk

conditionally on d jk and o2, can be derived from
(6) and ( 7)) as

2
1 Tj j
2k

J

Edyldy, o= — .
1 1+0jk(djk,0'2) o2 +77

®

4. Wavelet and ARIMA model

In this Section, we study the effect of wavelet
transformation on the sum of square error for the
ARIMA model.

Theorem1:
Suppose that the time series Z,has constant

variance and non seasonality and it is contaminated
by correlated noise, using wavelet transformation and
hard threshold technique, this time series is
decomposed into two time series as following:

Z, =X+ Y,

where X,and Y; denote the signal and noise,

respectively, then the sum of the two sum square
residuals from ARIMA model of X, pluse the sum

square residual from ARIMA model of ¥, is less

than or equal to the sum square residual from
ARIMA model of Z, under the condition that the

analysis of each time series Z,,X, and Y, done
individually.
Proof

The proof of the previous theorem depends on the
proofs given in following steps:

Step (1) X, and Y, are uncorrelated

Proof
From equation (1) the DWT of Z is:

d=wzZ

by using hard threshold in equation (2) and let

d.
dli:{ !
0

and

if d; > |4

otherwise
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it d; <[4

d2;= d;
! 0 otherwise

it is clear that d1 and d2 are uncorrelated use the
inverse discrete wavelet transformation (IDWT)

X =wldl andy =w7d2

where the matrix W is orthonormal, then
xTy =al wwTaz=dl" a2
Therefore

X, and Y, are uncorrelated
Step (2) proof that A°Z, =A°X, +A°Y, , where

A? is the difference backward operator of order s.

Proof
The first difference backward of Z; is:

AZy =Z; =24
=X, +Y, -X; 1Y

then

AZ, =AX, +AY,

also, the second difference backward of Z (st

AN2Z, =7, =27, 1+Z;_,
=X, +Y; =2 +Y, )+ X o+
=A2X, +A%,

and so on. The § % difference backward is:
ASZ, = ASXt +ASY,

Step 3) Z,,=X,,+Y,,, where Z,,,X, ,and
and Y
respectively, at time ¢ by using ARMA model on Z

Y,, are the forecasting of Z, X

Proof
Now we consider Z as a stationary time series. Firstly

we give the proof for AR(p) case. In this case Z ;218
given by

A P,
Zs, = Z (Dstt—s
s=0

where
Ci)zs 's are the estimated parameters of AR(p) due to
the analysis of time series Z

then

A P
Zsy :Z(Dzs (Xt—s +Yt—s)
s

2, P
:Zq)stt—s +Zq)stt—s

s s
=X;,+Y;,

Secondly we give the proof for the MA(q) case:
Let g =1, then

Z, =& —0O¢
t =& i

set gy =

-1
& =2+ Z CO
s=1

set & =

then

-1
Zig= —2(92 ) Zy s
s=1
~ t_l ~
Zy =206,V (X s +Y, )
s=1
R =l =l
Zs, :_Z(ez) X _Z(az) Y s
s=1 s=1
=X 4V,
where éz is the estimated parameters of MA(1) due to
the analysis of the time series Z.

Let q =2, from equation (6)
Z; =& — 0161 - 626
set &g =& =0

then
&y = 2'2 5 and
& =2, +051+6h&
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=Z;+6 (Zt—l +61& ‘H9251‘3)

+0,(Z,p + 053+ 0,5 _4)

2 2
=Z;+0Z 1+ Z o +0 & ) +20008_3+056 4
=Z, +0Z, 1 +(O,+O)Z, 5 +(260,6,

3 2 2
)& 3 +(03 + 607058 4
and so on
we can rewrite the error &, in the following form

t-1
& = th—s @,6,)Z;

s=0

where

fi(6,6,)=1
f1(8,0,)=6
f12(0,0,) =06, +6}

and so on
set & =0, then

t-1
Z;, ="th—s (91:62)Zt—s
s=1
t-1 A
== ft—s (91592)(Xt—s +Yt—s)

s=1

t-1 t-1
=2 J1-s Q)X s =D f1 (0.6,
s=] s=1
=X, ,+Y;,
by the same way we can prove the MA(q) case as
above.
Combining firstly and secondly proofs we can
prove step 3 as follows:

let
t-1

Zt z = th_s ((DIZ 5q)22 "“"(Dpz ,le ,022 ,....,qu )ths

s=1

where

8¢5 (q)lz 7(D22 """q)pz ,(912 ,022 pereny qu )IS function

of ARMA(p,q)'s parameters on Z

then
. t-1 . . . A . ’
Zt z ™ zgt—s (q)lz ’CDZZ 9""’<Dpz ’012 >922 »""’qu )Xt—s

s=1

t-1
+Z 81-s (P17, D, "'"’q)pz 20,05, a""ﬂeqz Wi

s=1

=X, Yy

Step (4) proof that > X, ,Y;=0, where X, , is the

forecasting of X at time ¢ by using ARMA model
of Z

Proof
From properties of threshold the time series Y
represent as the noise has mean zero i.e.

DY, =0, since X and Y are uncorrelated

Therefore, X and Y are uncorrelated too, and the
covariance between X and Y equal zero i.e.

cov(/\;,Y)le)fth —(ZX J[—Z—Y—J=O
n n

n

=YXY =0

Step (5) > Y;,X;=0, where Y, , is the forecasting
of ¥ attime 7 by using the ARMA model of Z

Proof
From step 4

3Y,=0

then, ZXAQ must be approximately equal zero

Since X and Y are uncorrelated. Then, X and Y are
uncorrelated i.e.

cov(X ,Y ) = %ngf, - [_Z;{] [Z_YJ =0

n

=Y XY =0
Step (6) > Y, ,X,=0

Proof
From steps 1, 4 and 5, we obtain;

A A A n > YA
cov(X,Y):%thzytz _[thz J(Z iz ]:0

n

:ZXAIZYAIZ =0
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Step (7)
Z(Zt 'th)ZZZ(Xt 'XAtz)z'*‘Z(Yt ‘YAtz )2

Proof

22 -

2
tz) “Z(Xt +Y; th tz)

= Z(Xt _XAt z)2
Y(F, Y F2X(e X, (Y )

from steps 1, 3,4 and 5
Z((Xt _Xt Z)(Yt —ftz )): 0

then
32 -Z =YX, K A V)
Step(8) finally,

PO FLED N AR AN ED NC/RY 495
, where X ¢ x is the forecasting of X at time t by
using ARMA model on = X and Y,
at time t by using ARMA model

yis the

forecasting of Y
onY.

Proof

From step 3
-1

Xy = Z 8i—s (@1, Doy 55
s=1

D e O 5O e O )X g

where
815 (D1, Doy 5. px N P PR qx)lsal
function of ARMA(p,q)'s parameters on X

then
t-1 )
Z(Xt_zgt—s(q)lx’q)bc’ px’elx 592x5 eqx )Xt—s)
s=1
is minimum
Therefore
-1
Z(Xt _zgt—s(q)lxﬂq)Zx’ e px ’91x 7‘92x> s qx)Xt s)

s=1

t-1
_zgt—s(q)lz’q)Zz’ 2 pz’012702z’ ’qz)Xt—s)

s=1

<2

i.e.
S, K <X, X, ) (10)
Similarly
Y Y, )P <>, Y, ) (11)

then, by addition inequalities (10) and (11) we have

S, X )2+, Y, <>, -X, )

+Z(Yt Ytz

Finally, from step (3) we find that:

X, XY, V)<Y, -2, )
(12)

This complete the proof.

Theorem2:

Suppose that the time series Z,has constant
variance and non seasonality and it is contaminated
by correlated noise, using wavelet transformation,
soft threshold technique and Bayesian rule, this time
series is decomposed into tree time series as
following;:

Z, =X+ 7Y,

where X, and Y,
respectively, and

denote the signal and noise,

X, =X1,+ X2, (13)

where X1 is the time series of X multiple by the
shrinkage factor and X2 is the time series of
remaining term, then the total sum square of the
residuals from three ARIMA models of X1 , X2 and
Y less than or equal to the total sum square residuals
from the two ARIMA models of X, and ¥, under

the condition that the analysis of each time series
Z,,X1,X2 and Y, done individually.

Proof

From treorem1 we will need prove then the
total sum square residuals from two ARIMA models
less than or equal sum square residuals ARIMA
model of X
From (9)
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X1 =n X, (14)
and
X2 =(0-n)X; (15)

where 7, the shrinkage factor

then
X2 =(-n)/n X1, (16)
and
Xy =[1+A=n)/n X1,
ie.
X, =X1/n 17
Let
e=X-X, (18)
el=X1-X1, (19
and
e2=X2-X2, (20)

where X ;> X 1, and X 2, are the forecasting of

X, X1 and X2 at time t by using ARMA model on X
, respectively
from eq. 16, .17,18,20

e =el, I
e2, =(-n)/n el 3y
then
e =Y (el +e2,)* =3 el I’ (22)
t t t
Let
el1=X1-X1,
and
e2=X2-X"2,

where X1, and X 2, are the forecasting of X, X1
and X2 at time t by using ARMA model on X1 and

ARMA model on X2, respectively
then

Yl +e'2)? =Y e, 243 2,2 423 e e,
t t t t

but
e'l and e'2 are independent, then
Ye'le2, =0
‘
Therefore,
S, +e'2 )t =Ye 2 +Y e (23)
t t t
Since
Ye,? <Yel? (24)
¢ {
And
Ye'2,? <Y e, (25)
t t
by addition 24 and 25

Ze'lt2 +Ze’2t2 SZel,2 +z:e2t2
t t t t

From 25
et +Ye2 <Y el, 2+ Y [(1-5)/n el
t { t t

ie. -~

" 2 ’ 2 2
e e 2,2 Q" +(1-n) ]elt2 /77t2
‘ P {

ie.
Zelltz +Ze’2t2 < Zdzz In? +Z[277t2 -2n, 11, /n,?
P P P :

1.e

Yel2+Ye2? <Yel,? /n? +23 [1-1/7,]el
t t t t

ie.
Yel2+Ye2,2 <Y el? in* 23 1/ 5, ~1]el,?
t t t t

but
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0<1/7, -1

SO

0<25[1/ 5, ~1]el,
t

then
Ze’l,2 +Ze’2t2 < 29112 /17t2
t t t

from 22
Sl +e'2,)* <Ye?
t t

(5) Application example

In this section, we will analyze the numbers of
tourists whom coming to Egypt monthly through the
period (1990 — 2006) as the time series by using
wavelet technique (Ministry of tourisms in Egypt is
the source of data). We use the MathCAD 14 and
Minitab 13 for the analysis. The output results are
displayed in the following:

5.1. ARIMA Model for Z

AZ, =—0.01854—-13229AZ,_| —0.9949AZ; _,

+1.28798t 4t 0.9853 &2

where AZ,

& =AZ, - AZ, . The sum of square error from =3 to
t=192 as the following :

is the first back difference of Z, and

192
3 (z-2)* =544

t=3

where Z is analyze the numbers of tourists whom
coming to Egypt monthly through the period (1990 —
2006) divided on 1000, take the natural logarithm
and take the deference 12.

5.2. ARIMA Model for Y
AY, =0.0000938 +0.7407 &,_; +0.2455¢,_»

where AY, is the first back difference of Y, and
g =AY, -AY,.

5.3. ARTMA Model for X

AX, =-0.004421 +0.1522 AX,_,
where AX, is the first back difference of X, .
Then we can use model

Z, =X, +Y,
Therefore

Z, =-0.0043272 +X,_; +0.1522 AX,_;+¥,_,

+0.7407 ¢y, _1 +0.2455¢y,_»
where £y, =AY, —AY, .The sum of square error

from t=3 to t=192 as the following

192 L
S(-X Y)Y =452
t=3

The efficiency of using wavelet relative to without
wavelet as the following:

192
3z -7)?
=3 * _
= — 100 = 122.8%
S(-X-Y)
=3
5.4. ARIMA Model for X1

A*X 1, =0.0002013 —0.37025,_; —0.6103_»

where AX 1, is the second back difference of
X1 and g =A2X1, —A’X ],

5.5. ARIMA Model for X2

AX 2, =-0.0001167 —0.8541g,_1—0.13555_,
where AX2, is the first back difference of

X1,and 5 =AX 2, —~AX 2,
Then we can use model
Z, =X,1+X,2+Y,

Therefore
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Z, =0.0001784—+X 1,_, +0.3702¢x1,_;
—0.6103ex1,_5 +X 2,_; —0.8541ex2,

—-0.1355ex 2, 5+, 1 +0.7407 ¢y, _; +0.2455¢y,_,
where

exl, =A*X 1, ~A’X1, ,6x2, =AX 2, ~AX 2, and
£y, =AY, —AY, .The sum of square error from t=3
to t=192 as the following;:

192 ~ . ~
Y(z-X1-X2-Y)? =372
t=3

The efficiency of using wavelet and Bayesian rule
relative to without wavelet and Bayesian rule as
follows:

192

3 (z-2)
5 =3 *100 = 149.2%
Y (z-X1-X2-Y)>
t=3

Where Z, X , X1, X2 and Y represents the variables as
the above theorem1 and theorem2.

Note that, the total sum of squares for X and Y
ARIMA models less than the sum of squares for Z
and the total sum of squares for X1, X2 and Y
ARIMA models less than the total sum of squares for
X and Y ARIMA models.
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