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Abstract. In this paper, we investigate the robustness of some well known correlation coefficients, namely,
Pearson’s, Spearman’s and Kendall’s. The empirical evidence shows that these correlation coefficients are
sufficiently non-robust against outliers. That is, they do not have high breakdown points. As an alternative, a
robust estimator for the correlation coefficient is proposed. This estimator is based on the least median of
squares. It is shown that this correlation coefficient has a higher breakdown point than the well known
correlation coefficients.
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1. Introduction

The correlation coefficient is a standard tool in applied regression analysis. Although it
is not always thoughtfully used, it remains an informative summary measure of the
predictive power of the selected regression model. However, since the least squares
regression analysis is very sensitive to outliers, it is not surprising that the coefficient of
correlation inherits this problem.

Let (X1, Y1), «vevvene , (Xu, Yu) be n observations from a bivariate normal distribution
with parameters (p,, Wy, ol cyz, p), where u, and cxz are the mean and variance of x, p,
and cryz are the mean and variance of y. p is the correlation coefficient between x and y
which is given by p=B o/ 6,, where B is the slope parameter of regression y on x. The
sample correlation coefficient commonly used for estimating p is the Pearson’s
correlation coefficient which is defined as:
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In regression analysis, it is often recognized that outliers can occur in either the
dependent variable y or independent variable x or in both variables. The correlation

coefficient r, in (1) is based on the sample means X and ;1, respectively, which are

known to be very sensitive to the presence of outliers. The statistic which measures the
effect of a possible outlier (x, y) at the correlation coefficient is called the influence
function. In this respect, Romanazzi [1] illustrated the non-robustness of r, by showing
that its influence function is unbounded.

As an alternative to the Pearson’s correlation coefficient, 1, , we may turn to non-
parametric correlation coefficients which are based on the ranks of the observations.
Two well known correlation coefficients of this type are Spearman’s rho and Kendall’s
tau. Spearman’s rho, 1, can be computed as:

6D (2)
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and r,,r, are the ranks of y; and x; respectively. Kendall’s tau, ry, is given by:

— >
rk =l-——

n(n--1) (3)

where Q is the number of inversions between the rankings of x and y. An inversion is
any pair of objects (i, j) such that r; - r; and ri/ - rj/ have opposite signs.

By replacing the values of the observations by their ranks, the effect of some
extreme observations may be reduced. Therefore, we can expect that the rank correlation
coefficients, 1, and r, would be less sensitive to the outliers than the Pearson’s correlation
coefficient 1,, However, the question still arises here is which one of these rank
correlations is sufficiently robust to a substantial amount of outliers, i.e. which one has
high breakdown point. The breakdown point, BP, is the maximal fraction of outliers that
an estimator can withstand or the smallest proportion of bad observations that the
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estimator can resist before it breaks down.  BP = 50% is the best that can be expected
to be achieved by an estimator, (Rousseeuw and Leroy [2, p. 9]).

In this paper, we introduce a robust estimator of the correlation coefficient which is
expected to have a high breakdown point. It is based on the least median of squares
regression procedure. This robust correlation coefficient will be introduced in Section 2.
Section 3 presents an illustrative example to illustrate the robustness of the correlation
coefficient and its comparison with the non-robust correlation coefficients, r,, r; and .
Section 4 describes a simulation study in which the four correlation coefficients are
compared in terms of their empirical breakdown points, and other sampling properties,
namely the bias, variance, standard error, mean square error and root mean square error
will also be presented. Section 5 contains the conclusion.

2. A Robust Correlation Coefficient
Consider the following linear regression model:
yi=B0+B]xil+'“+kaik+Ei 3 i=1525-“’n (4)

An estimator of B; (j = 0, ..., k) with 50% BP is the Least Median of Squares
(LMS). 1t is defined as the value which minimizes:

med eiz R ©)

where:
K . .
Ci=yi-ZBjxij , 1=0,1,...,n
i

The LMS performs poorly when the errors are really normally distributed. To
overcome this problem, one should combine the LMS estimator with an efficient
maximum likelihood type estimator (M-estimator) in the following way. Start with the
LMS estimator and iterate with a redescending M-estimator (Hampel et al., [3]).

Alternatively, Rousseeuw and Leroy [2, p. 76] suggested that, one can apply a
weighted least squares defined by:

T (6)
Minimize )’ w;e} -
i

where:
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This means simply that observation i will be retained in the weighted least squares if its
absolute standardized residual is reasonably small or moderate, but omitted if it is an
outlying observation. The criterion (7) may be interpreted as a ‘hard’ rejection of outliers
in which only ‘good’ observations are retained in the data set. Therefore, the resulting
estimator will still possess the high breakdown point, but is more efficient under the
normality assumption.

The robust correlation coefficient between x and y associated with (6) and (7) is
now defined as:

I = 2 Wi(%i =X, ) (¥ ~Yy) _ )

[Zwitx, =%, )2 Zwi(y; -y, )" 2

where :

- _ZWiXi - __Zini

- > d - >
Xw Z w; an yw Z Wi

With w; being defined by (7), 1, can then be expected to have the same maximal
breakdown point, i.e. BP = 50% as possessed by the LMS regression estimator. Also, 1,
can be viewed as the weighted Pearson’s correlation coefficient which considers only the
‘good’ observations in the data set.

3. Illustrative Example

In order to compare the various correlation coefficients, we consider the so-called
Pilot-plant chemical data from Daniel and Wood [4, p. 46]. The response variable (y)
corresponds to acid content determined by titration and the explanatory variable (x) is
the organic acid content determined by extraction and weighting (the data is presented in
the appendix).

Considering the data assuming that one of the observations, i.e. the x-value of the
sixth observation has been wrongly recorded as 370 instead of 37. The results of various
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correlation coefficients based on the data which consists of n = 20 observations are
presented in Table 1.

Table 1. The values of ry, I,. r, and ry for the Pilot-plant data

Correlation coefficient X6 =370 x¢ =137
Pearson’s T 0.38 0.99
Spearman’s Ts 0.76 0.99
Kendall’s I 0.73 0.90
LMS 1y 0.99 0.99

The results show that Pearson’s correlation coefficient has been strongly affected
by the single outlier. The Spearman’s and Kendall’s correlation coefficients seem to be
slightly affected by the extreme observation. On the other hand, the LMS based
correlation coefficient was not at all influenced by the outlier because it was based on
the ‘reduced or clean’ observations with nonzero weights.

4. Simulation Study

We carry out a simulation study to illustrate the breakdown properties of the
correlation coefficients; 1, , 1, , 1 and r,, as were defined by (1), (2), (3) and (9). We
begin with generating 100 ‘good’ observations according to the linear relation: y; = 2.0 +
1.0 x; + &;, where x; is normally distributed with mean 5 and variance 1, ¢; is drawn from
N(0, 6°), 6 = 0.2 and the true value of p is 1.0. The normal varieties were generated by
the NAG program subroutine GOSDDF on the IBM 4341 computer system. Using these
data, we applied Egs. (1), (2), (3) and (9). The obtained results are: r, = 0.984, r, =
0976, 1, =0.876 and r, = 0.987. Because the data were uncontaminated, all the
correlation coefficients yielded values which are close to the original p = 1.

Then, we start to contaminate the data. At each step, we delete one ‘good’
observation and replace it with a ‘bad’ data point. The contaminated data point was
generated according to the linear relation where x; is uniformly distributed on (5, 10) and
y; is normally distributed with mean 2 and standard deviation 0.2. This is repeated until
only 50 ‘good’ observations remained. Table 2 presents the values of 1, 1, 1y and 1,
when ‘good’ observations are replaced by a certain percentage of outliers.

Table 2. The values of ry, ry, ry and ry, forn=100 and p=1

Contamination (%) r I, r Iy
0 0.984 0.976 0.876 0.987
10 -0.070 0.503 0.547 0.987
20 -0.317 0.195 0.314 0.988
30 -0.451 -0.091 0.096 0.988
40 -0.603 -0.380 -0.119 0.983
45 - 0.605 -0.448 -0.117 0.985

50 -0.601 -0.489 -0.225 -0.710
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From the results of Table 2, we see that 1, was immediately affected by outliers and
its value moves away from the true value as the percentage of outliers increases. It can
be noted that r, breaks down first and is then followed by the rank correlation
coefficients r; and r, The increase in the percentage of outliers from 0% (no
contamination) up to 45% contamination has changed not only the values but also the
signs of r,, 1; and 1y, ie. from the positive to the negative values of the correlation
coefficients. It appears that the LMS-based correlation coefficient r,, holds on before
breaking down at 50% of the outliers.

The breakdown properties of these sample correlation coefficients are investigated
further by looking at five summary statistics, namely, the bias, variance, standard error
(SE), mean square error (MSE), and root mean square error (RMSE) in 500 trials. In
each trial t (t =1, 2, ..., 500), a sample of size 20, 50 and 100, respectively, was
generated according to the sampling situations described earlier. The average of the

sample correlation coefficient pis p = T £p, which yields the bias p- p. The
variance is given by v (p) =T X(p, - ;—))2 which can be used to compute the MSE as:
MSE (p) = [bias]* + v (p ). Accordingly, the SE is given by m and the RMSE by
\/W(ﬁ) . These summary statistics are presented in Table 3 for n = 20, 50 and 100.

Table 3. Summary statistics for ry, ry, ry and ry for n =20, 50, 100 and p =1

Contamination Correlation n=20 n=50 n =100

(%) coefficient Bias SE RMSE Bias SE RMSE Bias SE RMSE

0 rp -0.21 0012 0.024 -0.020 0.006 0.020 -0.020 0.004 0.020

Ts —0.034 0.021 0.041 -0.027 0.010 0.029 -0.025 0.006 0.025

e -0.121 0.046 0.130 -0.125 0.023 0.127 0.126 0.015 0.127

Tw -0.017 0.012 0.021 -0.018 0.006 0.020 -0.017 0.004 0.018

10 rp ~1.112 0.254 1.140 -1.097 0.156 1.108 -1.102 0.102 1.107

Ts -0.501 0.087 0.508 -0.451 0.056 0494 -0.490 0.036 0.491

Ty -0.453 0.056 0.456 -0.447 0.033 0.448 -0.446 0.021 0.446

Tw -0.018 0.012 0.021 —0.018 0.006 0.019 -0.018 0.004 0.018

20 rp -1.380 0.187 1.392 -1.371 0.120 1.376 1.374 0.081 1.376

Ts —0.873 0.101 0.879 -0.8¢4 0.068 0.867 -0 865 0.045 0.866

Iy -0.732 0.062 0.735 -0.718 0.039 0.719 -0715 0.025 0.715

Tw -0.019 0.012 0.022 -0.0/8 0.007 0.019 -0.018 0.004 0.019

30 rp -1.503 0.152 1511 ~1.493 0.092 1.496 -1.492 0.068 1.493

Ts -1.159 0.119 1.165 S48 0.073 1151 -1.150 0.054 L1581

Tk —0.954 0.076 0.957 -0.915 0.043 0.936 -0.931 0.031 0.932

Tw -0.020 0.013 0.024 0019 0.008 0.020 -0.018 0.005 0.019

40 rp -1.510 0.123 1.575 -1L.546 0.080 1.548 -1.550 0.059 1.551

Ts -1.362 0.117 1.367 -1.347 0.075 1.349 -1.347 0.055 1.348

T -1.123 0.079 1.126 1130 0.047 t.101 0.095 0.033 1.096

Tw —0.021 0.014 0.026 0.019 0.008 0.020 -0.019 0.005 0.019

50 rp -1.582 0.169 1.587 1.580 0077 1.582 -1.574 0.050 1574

Ts ~1.473 0.123 1.478 -1.474 0.078 1.476 -1.465 0.054 1.466

Ty -1.235 0.087 1.238 -1.220 0.052 1.221 tZOG 0.036 1.206

Tw —1.664 0.136 1.670 -1.659 0084 1.661 -1.650 0.098 1.653
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From the results of Table 3, we see that the r, and 1, correlation coefficients
provide the best results when no contamination occurs in the model. As a result, the rank
correlation coefficients r; and r, perform somewhat less than the r, and r, based
counterparts in the normal situation. It can be noted that the bias is negligible in this
situation and the variance makes up most of the MSE. In addition, as the percentage of
outliers increases in the data, the r,, 1, and 1, correlation coefficients break down
systematically at these contaminated samples and they have very high MSE values. For
these correlation coefficients, the bias makes up most of the MSE.

On the other hand, the LMS-based correlation coefficient performs reasonably well
even in the situation where there are nearly 50% outliers in the data. The results seem to
be consistent in all 500 trials and for each sample size n = 20, 50 and 100. Therefore, we
conclude that the LMS-based correlation coefficient, r,, has a higher breakdown point
than the  usual correlation coefficients, r,, r; and r because it is able to withstand
substantial amounts of outliers in the data.

5. Conclusion

We have seen that the Pearson’s correlation coefficient is very sensitive to the
presence of outliers. The empirical study shows that the Spearman’s and Kendall’s rank
correlation coefficients are not sufficiently robust when the percentage of outliers
increases in the data set. Therefore, they cannot provide a robust alternative to the
Pearson’s correlation coefficient. In this respect, the LMS-based correlation coefficient
indeed achieves the goal for which it was constructed because it is able to produce
satisfactory results even in the presence of a large amount of outliers.
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Appendix
The Pilot-plant data
Obs. y X
i 76 123
2 70 109
3 55 62
4 71 104
5 55 57
6 48 37
7 50 44
8 66 100
9 41 16
10 43 28
11 82 138
12 68 105
13 88 159
14 58 75
15 64 88
16 88 164
17 89 169
18 88 167
19 84 149
20 88 167

Source: Daniel and Wood [4, p. 46].
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