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Abstract. Many statistical tests have been proposed to find out whether a sample is drawn from a normal
distribution or not. These statistical tests are typically constructed using OLS residuals. However, since
diagnostic tests for normality are very sensitive to outliers, they have a zero breakdown value. In this paper, we
attempt to investigate the effects of using residuals from robust regression replacing OLS residuals in test
statistics for normality. We study a modified Jarque-Bera test statistic for normality based on robust regression
residuals. The asymptotic distribution of this robustified normality test is derived, and its breakdown property
is discussed.
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1. Introduction

Significant deviations from normality of the regression residuals can substantially affect
the performance of usual inference techniques. Thus, diagnostic tests for normality are
important for validating inferences made from regression models. Several such tests
have been proposed [1-4]. In general, these tests are conducted by testing the ordinary
least squares (OLS) residuals for normality. However, since OLS estimates themselves
are obtained by maximizing the likelihood function that the residuals come from some
normal distributions, OLS residuals tend to look as normal as they can possibly be. Thus,
these tests fail to detect any lack of normality in the OLS analysis.

Consider we have independently sampled n observations X,=(xi, X3,..., X,) with

mean [ and standard deviation 6. The coefficients of skewness and kurtosis are defined
as:
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where |1, = E[(x-J)] be the rth centeral moment of X, with u2=02. Kendall and Stuart [5]
pointed out that if X,, is i.i.d. and normally distributed, then:

b, —3 N(0.6) and ¥a(b, ~3)——> N(024) @

Regarding univariate normality tests amongst the several alternatives, we have
selected Jarque and Bera (JB) as being one of the popular tests for testing normality in
regression applications. It is well known that the JB test is based on a weighted average
of the skewness and kurtosis as:
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where n is the sample size, Jb, is the sample skewness and b, is the sample kurtosis.

Jarque and Bera [4] proved that if the alternatives to the normal distribution belong to
the Pearson family, JB is a score test for normality. However, because the classical
skewness and kurtosis coefficients \/bT and b, are based on OLS residuals, they are very

sensitive to outliers in the data. Therefore, the main idea of this paper is to use the same
JB test using residuals from a robust regression estimator instead of OLS residuals, and
denote this by JB*. The particular estimator we study is called least trimmed squares
(LTS), introduced by Rousseeuw [6].

The paper is organized as follows. Section 2, first, introduces the basic idea of the
least trimmed squares robust procedure. In Section 3, we derive the asymptotic
distribution of the robustified normality test, and the high breakdown property of the test
statistic is discussed. Section 4 includes simulation results, while Section 5 concludes the

paper.
2. The Least Trimmed Squares Method

The least trimmed squares (LTS) method has the property of being highly resistant
to a relatively large proportion of outliers. Thus, LTS has a high breakdown value. For
the details of this technique and its properties, see Rousseeuw and Leroy [7], and also
Chapter 5 of Zaman [8].

Consider the following regression model:

yi=xi[3+ui, i=1,2,....,n, (5)
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where x; is a (1xk) vector of regressors, B is a (kx1) vector of regression coefficients, y;
are observed responses, and u; represent the error terms which are assumed to be
independent and identically distributed with mean 0 and standard deviation G.

The LTS estimate is given by:

b,
Min Ze(i) s (6)
i=1

where ez(l) < ez(z) 5..,%< ez(n) are the ordered squared residuals €% = i - X [3)2, =1,...,n,
and the value of h must be determined based on trimming the data values. For example, the

(4n/5)
20% trimmed LTS estimator is defined to be the value of B minimizing ' e(zl) 5.

i=1
Chen [9] defined h in the range [(n/2) + 1] <h < [(3ntk-+1)/4], and recommended that
the breakdown value for the LTS estimator is n-h/n, when h=[(3n+k-+1)/4].

Although there exist other high breakdown estimators, the LTS has many
advantages to recommend itself. A recently developed algorithm has permitted fast
computation of the LTS (see Rousseeuw and Van Driessen [10]). The main advantages
of the LTS method are as follows. First, LTS are simple to understand and easy to
motivate. Second, it is more efficient than the LMS (least median of squares) introduced
by Rousseeuw [6] with which it shares these advantages. Many estimators commonly
regarded as ‘robust’ in the econometrics literature have low breakdown values and
cannot deal with any significant number of outliers. For example, the bounded influence
estimator of Krasker and Welsch [11], and the least absolute deviation method, both
suffer heavily from the presence of a small subgroup of outliers (see Yohai [12]).

3. Asymptotic and Robustness Properties

In this section, we discuss the asymptotic distribution and the breakdown property
of the robustified normality test statistic.

Theorem 1: Under the null hypothesis of normality of the error terms, JB* is distributed
asymptotically chi-squared with 2 degrees of freedom.

Proof: As can be seen from Hossjer [13] that:
Vn@-p) = Oe(1), (N

Then, using Eq. (7) and Davidson and Mackinnon [14, pp. 568-570], we obtain:
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3
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where e; are the residuals from LTS regression and G is the LTS estimate of the
standard deviation. So, we have:

3
i 10
6255 45N, (10)
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Similarly for
4 1n
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Then, combining Eqgs. (10) and (11) in the test statistic, we have:
d
JB* _ X%z) (12)

The breakdown point of a statistical function is the smallest fraction of data
contamination that can produce arbitrarily extreme results. So, a power breakdown point
is the least amount of data contamination that can drive the test statistic to its null value
regardless of the true alternative value (see He et al. [15] and Markatou and He [9] for a
detailed discussion).

On the other hand, the weighted likelihood estimator [17] may reduce to the LTS
estimator with the following weights:

w=|1 ifish (13)
0 ifi>h

where h is the trimming point, and i=1, ..., n are ordered. Following Agostinelli and
Markatou [18], we define the score type test function as:
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where 0 is the vector of parameters, the superscript 'denotes transpose and I(0) is the

n

Fisher information matrix evaluated at 6 ,S,(6) =z wu(y;, 0) is the score function
i=l

evaluated at 0, and u(y;, ) = 9 L(y;, 0) , where L(y;, 0) is the log-likelihood function.

a0

Following the same technique as Agostinelli and Markatou [18, p. 507], but making

minor modifications required to allow for the fact that we have a Pearson family

alternative, it may be possible to establish that the power breakdown point of the JB* test
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is the same as the breakdown point of LTS estimator, if the alternative belongs to the
Pearson family.

4. Numerical Results

Rousseeuw and Leroy [7] used several data sets for their analysis related to the
robust regression. As a preliminary test for the validity of our basic idea, we conducted a
study of tests for normality using the same five data sets. The results, which are
presented in Table 1, are highly encouraging. In each of the five data sets studied, we
can say that the JB test fails to detect any lack of normality in the OLS residuals, while
JB* picks up the lack of normality of the errors very clearly.

Table 1. The values of the normality test statistics from Rousseeuw and Leroy data sets

Series n JB JB*
Brain 28 1.93 25.52
Cloud 19 2.23 7.14
Salinity 28 0.03 165.32
Aircraft 23 0.17 57.88
Delivery 25 0.01 54.22

Rousseeuw and Leroy [7] from pages 57, 96, 82, 154, 155.

In addition, since the presence of many outliers (corresponding to.lack of
normality) in these series is well known, we observe that the JB test, conducted to the
basis of OLS residuals, can lead to misleading outcomes. On the other hand, in order to
understand the reasons for the superiority of JB* test on the Rousseeuw and Leroy data
sets, we carry out a Monte Carlo simulation to obtain the power comparisons of JB and
JB* using the GAUSS program.

To generate random variates from normal and other distributions considered
throughout the study, we used the random number generator of GAUSS 3.1.1. We
considered a linear model with a constant term of one and one additional regressor.
Every experiment in this simulation allows some alternative distributions than just i.i.d.
with some non-normal density. To accomplish this, we started by using the mixture of
two normal distributions (0N (0, 1) + (1 - o) N(u, 6%)) as an alternative to the null of
normality. In this way, o allowed us to choose the percentage of outliers and i and 6°
allowed us to control the behavior of the outliers.

In the examples related to the failure of OLS series, we observed that the outliers
lie in clusters (see, for example, Rousseeuw and Leroy [7, p. 58]). Therefore, we study
the effects of clustered outliers (referred to as case A below) as opposed to randomly
generated outliers (referred to as case B below). The nature of the outliers also turns out
to be crucial. High variance outliers from N (0, 9) and N (0, 16) compared to the base
distribution N (0, 1) were studied, as well as mean-shift outliers generated from N 5, 1)
and N (10, 1) distributions.
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In order to make a comparison, we also generated outliers at random places in
samples. The first case, where the outliers are clustered, is labeled case A, and the
second case, where they are at random places, is labeled case B. The results for 20 and
50 observations are presented in Table 2. In all cases, 80% of the true errors are
generated from N (0, 1) and 20% of them from normal distributions with different means
and variances. So, 4 outliers are generated for the case of 20 observations and 10 outliers
for the case of 50 observations.

We compute the values of JB and JB* and we find out whether null hypothesis
(normality) is rejected by each individual test. The level of significance used was 0.10
throughout the simulations. We carried out 1000 replications and estimated the power of
each test by computing the percentage when the null hypothesis was rejected. The results
for 20 and 50 observations are presented in Table 2.

Table 2. Power comparisons of mixture of normal alternatives with 20% outliers under different

conditions

N=20 Case A Case B
N(5,1) JB 0.33 0.69
JB* 045 0.71
N (10, 1) JB 0.41 0.91
IB* 0.67 0.97
N(0,9) B 0.55 0.54
JB* 0.55 0.55
N (0,16) JB 0.73 0.71
JB* 0.73 0.71

N=150 Case A Case B
N(5,1) B 0.60 0.99
JB* 0.88 1.00
N (10, 1) B 0.68 1.00
JB* 0.75 1.00
N(0,9) JB 0.84 0.83
IB* 0.84 0.83
N (0,16) JB 0.96 0.95
JB* 0.96 0.95

The results of Table 2 show that when the outliers are clustered (case A) and
generated by shifting the mean of the normal, the robust version of the test has
substantially greater power than the test based on OLS residuals. In all other cases, both
tests have similar performance. This can be explained as follows. With balanced outliers
on both sides of the regression line, the OLS estimator is not much affected by the
outliers, and hence OLS residuals are similar to robust residuals. In addition, outliers
generated by high variance are likely equally affected and did not lead to improved
performance for JB* as we had expected, while outliers generated by a mean shift all lie
on one side of the regression line and hence are much more effective in systematically
distorting OLS estimates.
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Also, clustering of the outliers has a significant effect on the relative performance
of these tests. Clustered outliers tend to systematically distort OLS estimators to the
possible largest extent (outliers with high leverage have a similar effect and result in
similar outcomes). Thus, these situations lead to maximum improvement for tests based
on robust residuals. When the outliers are not clustered, their impact on the OLS
estimators is reduced (equivalently, they have less leverage). In such situations, both
OLS and robust residuals pick out the outliers easily, and therefore both achieve high
power, as indicated in Table 2.

5. Conclusions

In this paper, we discussed the Jarque-Bera test of normality, which is not able to
detect normality in the presence of outliers. Therefore, we proposed to use residuals
from a robust regression technique (LTS) instead of OLS residuals as a basis for the
normality test. We found that the idea was valid by using some examples from the
literature, in which the robustified Jarque-Bera test (JB*) reveals lack of normality not
detected by the test based on OLS residuals. We obtained the asymptotic distribution of
the modified test as chi-squared with 2 degrees of freedom under the null hypothesis of
normality, and the breakdown point of the test statistic was investigated. From the results
of simulation, we found that the robust test yields substantially greater power for
systematic and clustered outliers situations.
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